Yaqi Wang, Yang Yuan, Shaocai Mo, Fang Wang, Jing Wei, Yao Yao, Yi Zeng, Yunquan Zhang
{"title":"Individual and joint exposures to PM<sub>2.5</sub> constituents and mortality risk among the oldest-old in China.","authors":"Yaqi Wang, Yang Yuan, Shaocai Mo, Fang Wang, Jing Wei, Yao Yao, Yi Zeng, Yunquan Zhang","doi":"10.1007/s11427-024-2718-9","DOIUrl":null,"url":null,"abstract":"<p><p>Cohort evidence linking long-term survival of older adults with exposure to fine particulate matter (PM<sub>2.5</sub>) constituents remains scarce in China. By constructing a dynamic cohort based on the Chinese Longitudinal Healthy Longevity Study, we aimed to assess the individual and joint associations of major PM<sub>2.5</sub> constituents with all-cause death in Chinese oldest-old (.80 years) adults. Time-dependent Cox proportional hazards models were adopted to estimate death risks of long-term exposure to PM<sub>2.5</sub> constituents. Among 14,884 participants, totaling 56,342 person-years of follow-up, 12,346 deaths were identified. The highest mortality risk associated with an interquartile range (IQR) increase in exposure was 1.081 (95% confidence interval [CI]: 1.055-1.108) for sulfate (IQR=4.1 μg m<sup>-3</sup>), followed by 1.078 (95% CI: 1.056-1.101) for black carbon (IQR=1.6 μg m<sup>-3</sup>), 1.056 (95% CI: 1.028-1.084) for ammonium (IQR=3.2 μg m<sup>-3</sup>), 1.050 (95% CI: 1.021-1.080) for nitrate (IQR=5.8 μg m<sup>-3</sup>), and 1.049 (95% CI: 1.024-1.074) for organic matter (IQR=10.3 μg m<sup>-3</sup>). In joint exposure, each IQRequivalent rise of all five PM<sub>2.5</sub> constituents was associated with an 8.2% (95% CI: 4.0%-12.6%) increase in mortality risk. The weight analysis indicated the predominant role of sulfate and black carbon in driving PM<sub>2.5</sub>-related mortality. Octogenarians (aged 80-89 years) and rural dwellers were at significantly greater risk of mortality from individual and joint exposures to PM<sub>2.5</sub> constituents. This study suggests that later-life exposure to PM<sub>2.5</sub> constituents, particularly sulfate and black carbon, may curtail long-term survival of the oldest-old in China.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-024-2718-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cohort evidence linking long-term survival of older adults with exposure to fine particulate matter (PM2.5) constituents remains scarce in China. By constructing a dynamic cohort based on the Chinese Longitudinal Healthy Longevity Study, we aimed to assess the individual and joint associations of major PM2.5 constituents with all-cause death in Chinese oldest-old (.80 years) adults. Time-dependent Cox proportional hazards models were adopted to estimate death risks of long-term exposure to PM2.5 constituents. Among 14,884 participants, totaling 56,342 person-years of follow-up, 12,346 deaths were identified. The highest mortality risk associated with an interquartile range (IQR) increase in exposure was 1.081 (95% confidence interval [CI]: 1.055-1.108) for sulfate (IQR=4.1 μg m-3), followed by 1.078 (95% CI: 1.056-1.101) for black carbon (IQR=1.6 μg m-3), 1.056 (95% CI: 1.028-1.084) for ammonium (IQR=3.2 μg m-3), 1.050 (95% CI: 1.021-1.080) for nitrate (IQR=5.8 μg m-3), and 1.049 (95% CI: 1.024-1.074) for organic matter (IQR=10.3 μg m-3). In joint exposure, each IQRequivalent rise of all five PM2.5 constituents was associated with an 8.2% (95% CI: 4.0%-12.6%) increase in mortality risk. The weight analysis indicated the predominant role of sulfate and black carbon in driving PM2.5-related mortality. Octogenarians (aged 80-89 years) and rural dwellers were at significantly greater risk of mortality from individual and joint exposures to PM2.5 constituents. This study suggests that later-life exposure to PM2.5 constituents, particularly sulfate and black carbon, may curtail long-term survival of the oldest-old in China.
期刊介绍:
Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.