Jailan Oweda, Mike Michael Schmitgen, Gudrun M Henemann, Marius Gerdes, Robert Christian Wolf
{"title":"Machine learning based classification of excessive smartphone users via neuronal cue reactivity.","authors":"Jailan Oweda, Mike Michael Schmitgen, Gudrun M Henemann, Marius Gerdes, Robert Christian Wolf","doi":"10.1016/j.pscychresns.2024.111903","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive Smartphone Use (ESU) poses a significant challenge in contemporary society, yet its recognition as a distinct disorder remains ambiguous. This study aims to address this gap by leveraging functional magnetic resonance imaging (fMRI) data and machine learning techniques to classify ESU and non-excessive smartphone users (n-ESU) based on their neural Cue-Reactivity (CR) signatures. By conducting a CR task and analyzing brain activation patterns, we identified spatial similarities between addictive smartphone use and established addictive disorders. Our approach involved employing Support Vector Machines (SVM) for classification, enhanced with feature selection methods such as Recursive Feature Elimination (RFE) and Model-based Selection and dimensionality reduction methods such as and Principal Component Analysis (PCA) to mitigate the challenges posed by limited dataset size and high dimensionality of fMRI data. The results demonstrate the effectiveness of our classification model, achieving accuracies of up to 79.9 %. Furthermore, we observed region-specific activations contributing significantly to classification accuracy, highlighting the potential biomarkers associated with ESU. External validation on longitudinal data revealed the necessity for larger training datasets to improve model generalizability. Additionally, feature selection techniques proved crucial for optimizing model performance, particularly in datasets with combined information from multiple sources. Our findings underscore the importance of incorporating more data to enhance model stability and generalizability, with implications for advancing the understanding and treatment of ESU and related disorders. Overall, our study demonstrates the promise of machine learning approaches in elucidating neural correlates of ESU and informing targeted interventions for affected individuals.</p>","PeriodicalId":20776,"journal":{"name":"Psychiatry Research: Neuroimaging","volume":" ","pages":"111903"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatry Research: Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.pscychresns.2024.111903","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Excessive Smartphone Use (ESU) poses a significant challenge in contemporary society, yet its recognition as a distinct disorder remains ambiguous. This study aims to address this gap by leveraging functional magnetic resonance imaging (fMRI) data and machine learning techniques to classify ESU and non-excessive smartphone users (n-ESU) based on their neural Cue-Reactivity (CR) signatures. By conducting a CR task and analyzing brain activation patterns, we identified spatial similarities between addictive smartphone use and established addictive disorders. Our approach involved employing Support Vector Machines (SVM) for classification, enhanced with feature selection methods such as Recursive Feature Elimination (RFE) and Model-based Selection and dimensionality reduction methods such as and Principal Component Analysis (PCA) to mitigate the challenges posed by limited dataset size and high dimensionality of fMRI data. The results demonstrate the effectiveness of our classification model, achieving accuracies of up to 79.9 %. Furthermore, we observed region-specific activations contributing significantly to classification accuracy, highlighting the potential biomarkers associated with ESU. External validation on longitudinal data revealed the necessity for larger training datasets to improve model generalizability. Additionally, feature selection techniques proved crucial for optimizing model performance, particularly in datasets with combined information from multiple sources. Our findings underscore the importance of incorporating more data to enhance model stability and generalizability, with implications for advancing the understanding and treatment of ESU and related disorders. Overall, our study demonstrates the promise of machine learning approaches in elucidating neural correlates of ESU and informing targeted interventions for affected individuals.
期刊介绍:
The Neuroimaging section of Psychiatry Research publishes manuscripts on positron emission tomography, magnetic resonance imaging, computerized electroencephalographic topography, regional cerebral blood flow, computed tomography, magnetoencephalography, autoradiography, post-mortem regional analyses, and other imaging techniques. Reports concerning results in psychiatric disorders, dementias, and the effects of behaviorial tasks and pharmacological treatments are featured. We also invite manuscripts on the methods of obtaining images and computer processing of the images themselves. Selected case reports are also published.