{"title":"Application of Genetic Origin Analysis of Copy Number Variations in Non-Invasive Prenatal Testing.","authors":"Jing Wang, Qing-Wen Zhu, Ai-Ming Cui, Meng-Si Lin, Hai-Qin Lou","doi":"10.1002/pd.6688","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to assess the application of origin analysis of copy number variations (CNVs) in non-invasive prenatal testing (NIPT) and provide a basis for expanding the clinical application of NIPT.</p><p><strong>Method: </strong>We enrolled 35,317 patients who underwent NIPT between January 2019 and March 2023. Genome sequencing of copy number variation (CNV-Seq) analysis was performed using the CNV calling pipeline to identify subchromosomal abnormalities in maternal plasma. Genetic origin was determined by comparing the chimaerism ratio of CNV and the concentration of cell-free foetal DNA (cffDNA). All pregnant women with a high risk of CNV, as indicated by the NIPT, were informed of their genetic origins. Amniocentesis was recommended for detecting the CNVs in foetal chromosomes, and pregnancy outcomes were tracked.</p><p><strong>Results: </strong>A total of 109 pregnancies showed clinically significant positive results for CNV after NIPT, including 65 cases of maternal/foetal (M/F)-CNVs and 44 cases of F-CNVs. The occurrence of M/F-CNVs was independent of age, screening (serological or ultrasound) indications for abnormalities, and mode of pregnancy. The incidence of pathogenic/likely pathogenic (P/LP)-F-CNVs was high in cases where serological screening indicated intermediate, high-risk, or abnormal US findings (p < 0.05). In the M/F-CNV group, most of the P/LP-CNVs were small fragments with low penetrance; 55 (84.62%) were less than 5 Mb in size, and nine (13.85%) were between 5 and 10 Mb. In the F-CNV group, foetal P/LP-CNV was detected in 36 of 42 cases undergoing prenatal diagnosis, and no significant bias was noted in the size distribution of P/LP-F-CNV fragments. The prenatal diagnostic rate and positive predictive value in the F-CNV group were 95.45% and 85.71%, respectively, which were significantly different from those in the M/F group (26.15% and 52.95%), respectively (p < 0.05).</p><p><strong>Conclusions: </strong>Genetic origin analysis of CNV can effectively improve adherence to prenatal diagnosis in pregnant women and the accuracy of prenatal diagnosis.</p>","PeriodicalId":20387,"journal":{"name":"Prenatal Diagnosis","volume":" ","pages":"44-56"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prenatal Diagnosis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pd.6688","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to assess the application of origin analysis of copy number variations (CNVs) in non-invasive prenatal testing (NIPT) and provide a basis for expanding the clinical application of NIPT.
Method: We enrolled 35,317 patients who underwent NIPT between January 2019 and March 2023. Genome sequencing of copy number variation (CNV-Seq) analysis was performed using the CNV calling pipeline to identify subchromosomal abnormalities in maternal plasma. Genetic origin was determined by comparing the chimaerism ratio of CNV and the concentration of cell-free foetal DNA (cffDNA). All pregnant women with a high risk of CNV, as indicated by the NIPT, were informed of their genetic origins. Amniocentesis was recommended for detecting the CNVs in foetal chromosomes, and pregnancy outcomes were tracked.
Results: A total of 109 pregnancies showed clinically significant positive results for CNV after NIPT, including 65 cases of maternal/foetal (M/F)-CNVs and 44 cases of F-CNVs. The occurrence of M/F-CNVs was independent of age, screening (serological or ultrasound) indications for abnormalities, and mode of pregnancy. The incidence of pathogenic/likely pathogenic (P/LP)-F-CNVs was high in cases where serological screening indicated intermediate, high-risk, or abnormal US findings (p < 0.05). In the M/F-CNV group, most of the P/LP-CNVs were small fragments with low penetrance; 55 (84.62%) were less than 5 Mb in size, and nine (13.85%) were between 5 and 10 Mb. In the F-CNV group, foetal P/LP-CNV was detected in 36 of 42 cases undergoing prenatal diagnosis, and no significant bias was noted in the size distribution of P/LP-F-CNV fragments. The prenatal diagnostic rate and positive predictive value in the F-CNV group were 95.45% and 85.71%, respectively, which were significantly different from those in the M/F group (26.15% and 52.95%), respectively (p < 0.05).
Conclusions: Genetic origin analysis of CNV can effectively improve adherence to prenatal diagnosis in pregnant women and the accuracy of prenatal diagnosis.
期刊介绍:
Prenatal Diagnosis welcomes submissions in all aspects of prenatal diagnosis with a particular focus on areas in which molecular biology and genetics interface with prenatal care and therapy, encompassing: all aspects of fetal imaging, including sonography and magnetic resonance imaging; prenatal cytogenetics, including molecular studies and array CGH; prenatal screening studies; fetal cells and cell-free nucleic acids in maternal blood and other fluids; preimplantation genetic diagnosis (PGD); prenatal diagnosis of single gene disorders, including metabolic disorders; fetal therapy; fetal and placental development and pathology; development and evaluation of laboratory services for prenatal diagnosis; psychosocial, legal, ethical and economic aspects of prenatal diagnosis; prenatal genetic counseling