BEACH domain-containing protein SPIRRIG facilitates microtubule cytoskeleton-associated trichome morphogenesis in Arabidopsis.

IF 3.6 3区 生物学 Q1 PLANT SCIENCES
Planta Pub Date : 2024-10-14 DOI:10.1007/s00425-024-04545-5
Linyu Niu, Wenjuan Xie, Qian Li, Yali Wang, Xuanyu Zhang, Muyang Shi, Jingyu Zeng, Mengxiang Li, Yanling Wang, Jingxia Shao, Fei Yu, Lijun An
{"title":"BEACH domain-containing protein SPIRRIG facilitates microtubule cytoskeleton-associated trichome morphogenesis in Arabidopsis.","authors":"Linyu Niu, Wenjuan Xie, Qian Li, Yali Wang, Xuanyu Zhang, Muyang Shi, Jingyu Zeng, Mengxiang Li, Yanling Wang, Jingxia Shao, Fei Yu, Lijun An","doi":"10.1007/s00425-024-04545-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Main conclusion: </strong>Our studies reveal the involvement of SPI in cytoskeleton-associated trichome morphogenesis, expanding the roles of SPI in regulating plant epidermal cell development. Acquisition of distinct shapes is crucial for cells to perform their biological functions in multicellular organisms. Trichomes are specialized epidermal cells of plant aerial parts, offering an excellent paradigm for dissecting the underlying regulatory mechanism of plant cell shape development at the single-cell level. SPIRRIG (SPI) that encodes a BEACH domain-containing protein was initially identified to regulate trichome branch extension, but the possible pathway(s) through which SPI regulates trichome morphogenesis remain unclear. Here, we report that SPI facilitates microtubule-associated regulation on trichome branching in Arabidopsis. Functional loss of SPI results in trichome morphogenesis hyper-sensitive to the microtubule-disrupting drug oryzalin, implying SPI may mediate microtubule stability during trichome development. Accordingly, spi mutant has less-branched trichomes. Detailed live-cell imaging showed that the spatio-temporal microtubule organization during trichome morphogenesis is aberrant in spi mutants. Further genetic investigation indicated that SPI may cooperate with ZWICHEL (ZWI) to modulate microtubule dynamics during trichome morphogenesis. ZWI encodes a kinesin-like calmodulin-binding protein (KCBP), whose distribution is necessary for the proper microtubule organization in trichomes, and zwi mutants produce less-branched trichomes as well. Trichome branching is further inhibited in spi-3 zwi-101 double mutants compared to either of the single mutant. Moreover, we found SPI could co-localize with the MYTH4 domain of ZWI. Taken together, our results expand the role of SPI in regulating trichome morphogenesis and also reveal a molecular and genetic pathway in plant cell shape formation control.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 5","pages":"115"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-024-04545-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Main conclusion: Our studies reveal the involvement of SPI in cytoskeleton-associated trichome morphogenesis, expanding the roles of SPI in regulating plant epidermal cell development. Acquisition of distinct shapes is crucial for cells to perform their biological functions in multicellular organisms. Trichomes are specialized epidermal cells of plant aerial parts, offering an excellent paradigm for dissecting the underlying regulatory mechanism of plant cell shape development at the single-cell level. SPIRRIG (SPI) that encodes a BEACH domain-containing protein was initially identified to regulate trichome branch extension, but the possible pathway(s) through which SPI regulates trichome morphogenesis remain unclear. Here, we report that SPI facilitates microtubule-associated regulation on trichome branching in Arabidopsis. Functional loss of SPI results in trichome morphogenesis hyper-sensitive to the microtubule-disrupting drug oryzalin, implying SPI may mediate microtubule stability during trichome development. Accordingly, spi mutant has less-branched trichomes. Detailed live-cell imaging showed that the spatio-temporal microtubule organization during trichome morphogenesis is aberrant in spi mutants. Further genetic investigation indicated that SPI may cooperate with ZWICHEL (ZWI) to modulate microtubule dynamics during trichome morphogenesis. ZWI encodes a kinesin-like calmodulin-binding protein (KCBP), whose distribution is necessary for the proper microtubule organization in trichomes, and zwi mutants produce less-branched trichomes as well. Trichome branching is further inhibited in spi-3 zwi-101 double mutants compared to either of the single mutant. Moreover, we found SPI could co-localize with the MYTH4 domain of ZWI. Taken together, our results expand the role of SPI in regulating trichome morphogenesis and also reveal a molecular and genetic pathway in plant cell shape formation control.

含BEACH结构域的蛋白质SPIRRIG促进拟南芥中与微管细胞骨架相关的毛状体形态发生。
主要结论我们的研究揭示了 SPI 参与细胞骨架相关的毛状体形态发生,拓展了 SPI 在调控植物表皮细胞发育中的作用。在多细胞生物体中,获得独特的形状对于细胞发挥其生物功能至关重要。毛状体是植物气生部分的特化表皮细胞,为在单细胞水平上剖析植物细胞形状发育的潜在调控机制提供了一个极好的范例。编码含 BEACH 结构域蛋白的 SPIRRIG(SPI)最初被认为能调控毛状体分支的延伸,但 SPI 调控毛状体形态发生的可能途径仍不清楚。在这里,我们报告了 SPI 促进了拟南芥毛状体分枝的微管相关调控。功能性缺失 SPI 会导致毛状体形态发生对微管干扰药物奥利唑啉(oryzalin)过度敏感,这意味着 SPI 可能在毛状体发育过程中介导微管的稳定性。因此,spi 突变体的毛状体分枝较少。详细的活细胞成像显示,在spi突变体中,毛状体形态发生过程中的时空微管组织出现异常。进一步的遗传调查表明,SPI可能与ZWICHEL(ZWI)合作调节毛状体形态发生过程中的微管动力学。ZWI 编码一种类似于驱动蛋白的钙调蛋白结合蛋白(KCBP),其分布对于毛状体中适当的微管组织是必要的。与单突变体相比,spi-3 zwi-101双突变体的毛状体分枝受到进一步抑制。此外,我们还发现 SPI 可与 ZWI 的 MYTH4 结构域共定位。综上所述,我们的研究结果拓展了 SPI 在调控毛状体形态发生中的作用,同时也揭示了植物细胞形态形成调控的分子和遗传途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Planta
Planta 生物-植物科学
CiteScore
7.20
自引率
2.30%
发文量
217
审稿时长
2.3 months
期刊介绍: Planta publishes timely and substantial articles on all aspects of plant biology. We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信