Caroline Coradi Tonon, Alessandra Nara de Souza Rastelli, Chathuna Bodahandi, Shoaib Ashraf, Tayyaba Hasan, QianFeng Xu, Alexander Greer, Alan M Lyons
{"title":"Effect of treatment frequency on the efficacy of superhydrophobic antimicrobial photodynamic therapy of periodontitis in a wistar rat model.","authors":"Caroline Coradi Tonon, Alessandra Nara de Souza Rastelli, Chathuna Bodahandi, Shoaib Ashraf, Tayyaba Hasan, QianFeng Xu, Alexander Greer, Alan M Lyons","doi":"10.1111/php.14021","DOIUrl":null,"url":null,"abstract":"<p><p>Superhydrophobic antimicrobial photodynamic therapy (SH-aPDT) is advantageous wherein airborne singlet oxygen (<sup>1</sup>O<sub>2</sub>) is delivered from a device tip to kill a biofilm with no photosensitizer exposure and no bacterial selectivity (Gram + or Gram -). For effective treatment of periodontitis, the frequency of treatment as well as the optical light fluence required is not known. Thus, we sought to determine whether single or repeated SH-aPDT treatments would work best in vivo using two fluence values: 60 and 125 J/cm<sup>2</sup>. We assessed the efficacy of three protocols: single treatment; interval treatments (days 0, 2, and 7); and consecutive treatments (days 0, 1, and 2). After 30 days of evaluation, we found that, SH-aPDT in 3 consecutive treatments significantly decreased Porphyromonas gingivalis levels compared to single and interval SH-aPDT treatments, as well as SRP-chlorhexidine (CHX) controls (p < 0.05). Notably, clinical parameters also improved (p < 0.05), and histological and stereometric analyses revealed that consecutive SH-aPDT treatments were the most effective for promoting healing and reducing inflammation. Our study shows what works best for SH-aPDT, while also demonstrating SH-aPDT advantages to treatment of periodontitis including no bacterial selectivity (Gram + or Gram -) and preventing the development of bacterial resistance.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.14021","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Superhydrophobic antimicrobial photodynamic therapy (SH-aPDT) is advantageous wherein airborne singlet oxygen (1O2) is delivered from a device tip to kill a biofilm with no photosensitizer exposure and no bacterial selectivity (Gram + or Gram -). For effective treatment of periodontitis, the frequency of treatment as well as the optical light fluence required is not known. Thus, we sought to determine whether single or repeated SH-aPDT treatments would work best in vivo using two fluence values: 60 and 125 J/cm2. We assessed the efficacy of three protocols: single treatment; interval treatments (days 0, 2, and 7); and consecutive treatments (days 0, 1, and 2). After 30 days of evaluation, we found that, SH-aPDT in 3 consecutive treatments significantly decreased Porphyromonas gingivalis levels compared to single and interval SH-aPDT treatments, as well as SRP-chlorhexidine (CHX) controls (p < 0.05). Notably, clinical parameters also improved (p < 0.05), and histological and stereometric analyses revealed that consecutive SH-aPDT treatments were the most effective for promoting healing and reducing inflammation. Our study shows what works best for SH-aPDT, while also demonstrating SH-aPDT advantages to treatment of periodontitis including no bacterial selectivity (Gram + or Gram -) and preventing the development of bacterial resistance.
期刊介绍:
Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.