Thi Hoa My Tran, Sanjeevram Dhandapani, Samad Abdus, Yeon-Ju Kim
{"title":"1-Dehydro-6-Gingerdione Exerts Anticancer Effects on MDA-MB-231 Cells and in the Xenograft Mouse Model by Promoting the Ferroptosis Pathway.","authors":"Thi Hoa My Tran, Sanjeevram Dhandapani, Samad Abdus, Yeon-Ju Kim","doi":"10.1002/ptr.8331","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer (BC) is the most prevalent malignancy among women, with millions of newly diagnosed cases emerging annually. Therefore, identifying novel pharmaceuticals for therapeutic purposes is imperative. Several natural compounds and their products have demonstrated potential in the treatment of cancer. This study examined the effects of the ginger derivative 1-dehydro-6-gingerdione (1-D-6-G) on BC and its mechanisms of action. MTT and colony formation assays were used to check the anticancer effect of 1-D-6-G. Then the anticancer mechanism of 1-D-6-G was predicted using proteomics analysis. The molecular pathway was verified by qRT-PCR and immunobloting analysis. Additionally, the anticancer properties of 1-D-6-G were investigated in vivo using xenograft mice model. Finally, an in silico study was conducted to examine the interaction of 1-D-6-G and pathway-related proteins. MTT and colony formation assay results indicated that 1-D-6-G has potent cytotoxic properties against BC cells. Proteomic analysis revealed that the anticancer mechanism of 1-D-6-G on MDA-MB-231 cells is associated with the ferroptosis signaling pathway. In addition, qRT-PCR and immunoblotting analyses revealed that the cytotoxic effects of 1-D-6-G on MDA-MB-231 cells were associated with ferroptosis signaling induction. Our in vivo results further confirmed the in vitro findings. The administration of 1-D-6-G for 14 days exhibited anticancer properties in xenograft mice by stimulating the ferroptosis pathway without causing damage to essential organs such as the liver and kidneys. Additionally, in silico results confirmed the structural stability of the molecular interaction between 1-D-6-G and ferroptosis target proteins. Our findings indicate that 1-D-6-G has the potential to serve as a novel therapeutic agent for inhibiting BC progression by targeting the ferroptosis pathway.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8331","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer (BC) is the most prevalent malignancy among women, with millions of newly diagnosed cases emerging annually. Therefore, identifying novel pharmaceuticals for therapeutic purposes is imperative. Several natural compounds and their products have demonstrated potential in the treatment of cancer. This study examined the effects of the ginger derivative 1-dehydro-6-gingerdione (1-D-6-G) on BC and its mechanisms of action. MTT and colony formation assays were used to check the anticancer effect of 1-D-6-G. Then the anticancer mechanism of 1-D-6-G was predicted using proteomics analysis. The molecular pathway was verified by qRT-PCR and immunobloting analysis. Additionally, the anticancer properties of 1-D-6-G were investigated in vivo using xenograft mice model. Finally, an in silico study was conducted to examine the interaction of 1-D-6-G and pathway-related proteins. MTT and colony formation assay results indicated that 1-D-6-G has potent cytotoxic properties against BC cells. Proteomic analysis revealed that the anticancer mechanism of 1-D-6-G on MDA-MB-231 cells is associated with the ferroptosis signaling pathway. In addition, qRT-PCR and immunoblotting analyses revealed that the cytotoxic effects of 1-D-6-G on MDA-MB-231 cells were associated with ferroptosis signaling induction. Our in vivo results further confirmed the in vitro findings. The administration of 1-D-6-G for 14 days exhibited anticancer properties in xenograft mice by stimulating the ferroptosis pathway without causing damage to essential organs such as the liver and kidneys. Additionally, in silico results confirmed the structural stability of the molecular interaction between 1-D-6-G and ferroptosis target proteins. Our findings indicate that 1-D-6-G has the potential to serve as a novel therapeutic agent for inhibiting BC progression by targeting the ferroptosis pathway.
期刊介绍:
Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field.
Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters.
By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.