Layla van Zyl, Ashley M Burke, Lizette L Koekemoer, Bernard W T Coetzee
{"title":"Only incandescent light significantly decreases feeding of Anopheles funestus s.s. (Diptera: Culicidae) mosquitoes under laboratory conditions.","authors":"Layla van Zyl, Ashley M Burke, Lizette L Koekemoer, Bernard W T Coetzee","doi":"10.1007/s00436-024-08370-3","DOIUrl":null,"url":null,"abstract":"<p><p>Recent work has demonstrated that exposure to artificial light at night (ALAN) may alter mosquito feeding behavior and so must be considered a moderator of vector-borne disease transfer. Anopheles funestus mosquitoes are a primary malaria vector in sub-Saharan Africa, but no study to date has tested the impact of ALAN on their feeding behavior. Here we test if the exposure to commonly used household lights (compact fluorescent lights, light-emitting diodes, and incandescent lights) alters Anopheles funestus feeding. Mated, unfed female mosquitoes were exposed to a light treatment, at the onset of darkness, followed by a blood-feeding assay. The light treatments consisted of a 30-min light pulse of one of the three household lights, each in individual experimental containers, versus controls. All three household lights resulted in a reduction in the percentage of females taking a blood meal, but only mosquitoes exposed to incandescent light showed a statistically significant reduction in feeding of 19.6% relative to controls which showed a 42.8% feeding rate. Our results suggest that exposure to some household lights during the night may have an immediate inhibitory effect on Anopheles funestus feeding. By helping identify which light types lead to a suppression of feeding, the findings of this study could provide insight necessary to design household lights that can help minimize mosquito feeding on humans.</p>","PeriodicalId":19968,"journal":{"name":"Parasitology Research","volume":"123 10","pages":"355"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489244/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasitology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00436-024-08370-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent work has demonstrated that exposure to artificial light at night (ALAN) may alter mosquito feeding behavior and so must be considered a moderator of vector-borne disease transfer. Anopheles funestus mosquitoes are a primary malaria vector in sub-Saharan Africa, but no study to date has tested the impact of ALAN on their feeding behavior. Here we test if the exposure to commonly used household lights (compact fluorescent lights, light-emitting diodes, and incandescent lights) alters Anopheles funestus feeding. Mated, unfed female mosquitoes were exposed to a light treatment, at the onset of darkness, followed by a blood-feeding assay. The light treatments consisted of a 30-min light pulse of one of the three household lights, each in individual experimental containers, versus controls. All three household lights resulted in a reduction in the percentage of females taking a blood meal, but only mosquitoes exposed to incandescent light showed a statistically significant reduction in feeding of 19.6% relative to controls which showed a 42.8% feeding rate. Our results suggest that exposure to some household lights during the night may have an immediate inhibitory effect on Anopheles funestus feeding. By helping identify which light types lead to a suppression of feeding, the findings of this study could provide insight necessary to design household lights that can help minimize mosquito feeding on humans.
期刊介绍:
The journal Parasitology Research covers the latest developments in parasitology across a variety of disciplines, including biology, medicine and veterinary medicine. Among many topics discussed are chemotherapy and control of parasitic disease, and the relationship of host and parasite.
Other coverage includes: Protozoology, Helminthology, Entomology; Morphology (incl. Pathomorphology, Ultrastructure); Biochemistry, Physiology including Pathophysiology;
Parasite-Host-Relationships including Immunology and Host Specificity; life history, ecology and epidemiology; and Diagnosis, Chemotherapy and Control of Parasitic Diseases.