Danni Wang, Qian Zhang, Zhen Zhang, Yi Zhang, Song Wang, Yanhui Han, Huili Zhu, Hongxuan He
{"title":"Expression profile of Toll-like receptors and cytokines in the cecal tonsil of chickens challenged with Eimeria tenella.","authors":"Danni Wang, Qian Zhang, Zhen Zhang, Yi Zhang, Song Wang, Yanhui Han, Huili Zhu, Hongxuan He","doi":"10.1007/s00436-024-08371-2","DOIUrl":null,"url":null,"abstract":"<p><p>Chicken coccidiosis, caused by Eimeria spp., seriously affects the development of the poultry breeding industry. Currently, extensive studies of chicken coccidiosis are mostly focused on acquired immune responses, while information about the innate immune response of chicken coccidiosis is lacking. Toll-like receptor (TLR), the key molecule of the innate immune response, connects innate and adaptive immune responses and induces an immune response against various pathogen infections. Therefore, the quantitative real-time PCR was used to characterize the expression profile of chicken TLRs (chTLRs) and associated cytokines in the cecal tonsil of chickens infected with Eimeria tenella. The results showed that the expression of chTLR1a, chTLR2a, and chTLR5 was significantly upregulated at 3 h post-infection, while chTLR1b, chTLR2b, chTLR3, chTLR7, chTLR15 and chTLR21 was significantly downregulated (p < 0.05). In addition, chTLR1a expression rapidly reached the peaked expression at 3 h post-infection, while chTLR2b and chTLR15 peaked at 168 h post-infection, and chTLR2a expression was highest among chTLRs, peaking at 48 h post-infection (p < 0.05). For cytokines, interleukin (IL)-6 and tumor necrosis factor (TNF)-α peaked at 96 h post-infection, IL-4 and IL-12 peaked at 144 h post-infection, and interferon-γ expression was highest among cytokines at 120 h post-infection. In addition, IL-12 and IL-17 were markedly upregulated at 6 h post-infection (p < 0.05). These results provide insight into innate immune molecules during E. tenella infection in chickens and suggest that innate immune responses may mediate resistance to chicken coccidiosis.</p>","PeriodicalId":19968,"journal":{"name":"Parasitology Research","volume":"123 10","pages":"347"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasitology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00436-024-08371-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chicken coccidiosis, caused by Eimeria spp., seriously affects the development of the poultry breeding industry. Currently, extensive studies of chicken coccidiosis are mostly focused on acquired immune responses, while information about the innate immune response of chicken coccidiosis is lacking. Toll-like receptor (TLR), the key molecule of the innate immune response, connects innate and adaptive immune responses and induces an immune response against various pathogen infections. Therefore, the quantitative real-time PCR was used to characterize the expression profile of chicken TLRs (chTLRs) and associated cytokines in the cecal tonsil of chickens infected with Eimeria tenella. The results showed that the expression of chTLR1a, chTLR2a, and chTLR5 was significantly upregulated at 3 h post-infection, while chTLR1b, chTLR2b, chTLR3, chTLR7, chTLR15 and chTLR21 was significantly downregulated (p < 0.05). In addition, chTLR1a expression rapidly reached the peaked expression at 3 h post-infection, while chTLR2b and chTLR15 peaked at 168 h post-infection, and chTLR2a expression was highest among chTLRs, peaking at 48 h post-infection (p < 0.05). For cytokines, interleukin (IL)-6 and tumor necrosis factor (TNF)-α peaked at 96 h post-infection, IL-4 and IL-12 peaked at 144 h post-infection, and interferon-γ expression was highest among cytokines at 120 h post-infection. In addition, IL-12 and IL-17 were markedly upregulated at 6 h post-infection (p < 0.05). These results provide insight into innate immune molecules during E. tenella infection in chickens and suggest that innate immune responses may mediate resistance to chicken coccidiosis.
期刊介绍:
The journal Parasitology Research covers the latest developments in parasitology across a variety of disciplines, including biology, medicine and veterinary medicine. Among many topics discussed are chemotherapy and control of parasitic disease, and the relationship of host and parasite.
Other coverage includes: Protozoology, Helminthology, Entomology; Morphology (incl. Pathomorphology, Ultrastructure); Biochemistry, Physiology including Pathophysiology;
Parasite-Host-Relationships including Immunology and Host Specificity; life history, ecology and epidemiology; and Diagnosis, Chemotherapy and Control of Parasitic Diseases.