Jie Zhou , Zhu Zhu , Xi Zhang , Wenli Peng , Yongpeng He , Qing Zhang
{"title":"CircWDR37 promotes hepatocellular carcinoma tumorigenesis by mediating the miR-646/TRAF4 regulatory pathway","authors":"Jie Zhou , Zhu Zhu , Xi Zhang , Wenli Peng , Yongpeng He , Qing Zhang","doi":"10.1016/j.prp.2024.155658","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>CircRNA has emerged as a significant player in human malignancies, including hepatocellular carcinoma (HCC). Hsa_circ_0004277 (circWDR37) is abnormally up-regulated in HCC. But, its function and underlying mechanism in HCC progression are largely unknown.</div></div><div><h3>Methods</h3><div>qRT-PCR and western blot assays were used to measure the expression of circWDR37, miR-646, and TRAF4. Cell malignant phenotypes were assessed via CCK-8, EdU, colony formation, flow cytometry, transwell, and tube formation experiments. The intermolecular interaction between miR-646 and circWDR37 or TRAF4 was confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assay. The <em>in vivo</em> effect of circWDR37 on xenograft tumor growth was also investigated in mice.</div></div><div><h3>Results</h3><div>Increased CircWDR37 and TRAF4 and decreased miR-646 were found in HCC tissues and cells. Scilencing circWDR37 impeded cell proliferation, migration, invasion, and tube formation, while accelerated apoptosis. CircWDR37 directly bind to miR-646 to suppress miR-646 expression and up-regulate TRAF4 expression. MiR-646 inhibitor partially abated the cell phenotype changes caused by circWDR37 knockdown. Moreover, miR-646 exerted an inhibitory effect on cell malignant phenotypes, which were attenuated due to the increase of TRAF4. Additionally, circWDR37 knockdown blocked HCC tumor growth <em>in vivo</em>.</div></div><div><h3>Conclusion</h3><div>CircWDR37 exerted an oncogenic effect in HCC by sponging miR-646 to up-regulate TRAF4 expression. Our finding elucidates a novel ‘circWDR37-miR-646-TRAF4’ regulatory axis in HCC and provides a promising target for HCC treatment.</div></div>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0344033824005697","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
CircRNA has emerged as a significant player in human malignancies, including hepatocellular carcinoma (HCC). Hsa_circ_0004277 (circWDR37) is abnormally up-regulated in HCC. But, its function and underlying mechanism in HCC progression are largely unknown.
Methods
qRT-PCR and western blot assays were used to measure the expression of circWDR37, miR-646, and TRAF4. Cell malignant phenotypes were assessed via CCK-8, EdU, colony formation, flow cytometry, transwell, and tube formation experiments. The intermolecular interaction between miR-646 and circWDR37 or TRAF4 was confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assay. The in vivo effect of circWDR37 on xenograft tumor growth was also investigated in mice.
Results
Increased CircWDR37 and TRAF4 and decreased miR-646 were found in HCC tissues and cells. Scilencing circWDR37 impeded cell proliferation, migration, invasion, and tube formation, while accelerated apoptosis. CircWDR37 directly bind to miR-646 to suppress miR-646 expression and up-regulate TRAF4 expression. MiR-646 inhibitor partially abated the cell phenotype changes caused by circWDR37 knockdown. Moreover, miR-646 exerted an inhibitory effect on cell malignant phenotypes, which were attenuated due to the increase of TRAF4. Additionally, circWDR37 knockdown blocked HCC tumor growth in vivo.
Conclusion
CircWDR37 exerted an oncogenic effect in HCC by sponging miR-646 to up-regulate TRAF4 expression. Our finding elucidates a novel ‘circWDR37-miR-646-TRAF4’ regulatory axis in HCC and provides a promising target for HCC treatment.
期刊介绍:
Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.