{"title":"Transdermal Drug Delivery Systems: Different Generations and Dermatokinetic Assessment of Drug Concentration in Skin.","authors":"Rahul Kushwaha, Narahari N Palei","doi":"10.1007/s40290-024-00537-8","DOIUrl":null,"url":null,"abstract":"<p><p>Transdermal drug delivery systems (TDDS) are a highly appealing and innovative method of administering drugs through the skin, as it enables the drugs to achieve systemic effects. A TDDS offers patient convenience, avoids first-pass hepatic metabolism, enables local targeting, and reduces the toxic effect of drug. This review details several generations of TDDS and the advancements made in their development to address the constraints associated with skin delivery systems. Transdermal delivery methods of the first generation have been consistently growing in their clinical application for administering small, lipophilic, low-dose drugs. Second-generation TDDS, utilizing chemical enhancers and iontophoresis, have led to the development of clinical products. Third-generation delivery systems employ microneedles, thermal ablation, and electroporation to specifically target the stratum corneum, which is the skin's barrier layer. Dermatokinetics is the study of the movement of drugs and formulations applied to the skin over a period of time. It provides important information regarding the rate and extent to which drugs penetrate skin layers. Several dermatokinetic techniques, including tape stripping, microdialysis, and laser scanning microscopy, have been used to study the intricate barrier properties and clearance mechanisms of the skin. This understanding is essential for developing and improving effective TDDS.</p>","PeriodicalId":19778,"journal":{"name":"Pharmaceutical Medicine","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40290-024-00537-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Transdermal drug delivery systems (TDDS) are a highly appealing and innovative method of administering drugs through the skin, as it enables the drugs to achieve systemic effects. A TDDS offers patient convenience, avoids first-pass hepatic metabolism, enables local targeting, and reduces the toxic effect of drug. This review details several generations of TDDS and the advancements made in their development to address the constraints associated with skin delivery systems. Transdermal delivery methods of the first generation have been consistently growing in their clinical application for administering small, lipophilic, low-dose drugs. Second-generation TDDS, utilizing chemical enhancers and iontophoresis, have led to the development of clinical products. Third-generation delivery systems employ microneedles, thermal ablation, and electroporation to specifically target the stratum corneum, which is the skin's barrier layer. Dermatokinetics is the study of the movement of drugs and formulations applied to the skin over a period of time. It provides important information regarding the rate and extent to which drugs penetrate skin layers. Several dermatokinetic techniques, including tape stripping, microdialysis, and laser scanning microscopy, have been used to study the intricate barrier properties and clearance mechanisms of the skin. This understanding is essential for developing and improving effective TDDS.
期刊介绍:
Pharmaceutical Medicine is a specialist discipline concerned with medical aspects of the discovery, development, evaluation, registration, regulation, monitoring, marketing, distribution and pricing of medicines, drug-device and drug-diagnostic combinations. The Journal disseminates information to support the community of professionals working in these highly inter-related functions. Key areas include translational medicine, clinical trial design, pharmacovigilance, clinical toxicology, drug regulation, clinical pharmacology, biostatistics and pharmacoeconomics. The Journal includes:Overviews of contentious or emerging issues.Comprehensive narrative reviews that provide an authoritative source of information on topical issues.Systematic reviews that collate empirical evidence to answer a specific research question, using explicit, systematic methods as outlined by PRISMA statement.Original research articles reporting the results of well-designed studies with a strong link to wider areas of clinical research.Additional digital features (including animated abstracts, video abstracts, slide decks, audio slides, instructional videos, infographics, podcasts and animations) can be published with articles; these are designed to increase the visibility, readership and educational value of the journal’s content. In addition, articles published in Pharmaceutical Medicine may be accompanied by plain language summaries to assist readers who have some knowledge of, but not in-depth expertise in, the area to understand important medical advances.All manuscripts are subject to peer review by international experts. Letters to the Editor are welcomed and will be considered for publication.