Antonio Buonerba, Rosita Lapenta, Francesco Della Monica, Roberto Piacentini, Lucia Baldino, Maria Rosa Scognamiglio, Vito Speranza, Stefano Milione, Carmine Capacchione, Bernhard Rieger, Alfonso Grassi
{"title":"Thermo- and Photoresponsive Smart Nanomaterial Based on Poly(diethyl vinyl phosphonate)-Capped Gold Nanoparticles.","authors":"Antonio Buonerba, Rosita Lapenta, Francesco Della Monica, Roberto Piacentini, Lucia Baldino, Maria Rosa Scognamiglio, Vito Speranza, Stefano Milione, Carmine Capacchione, Bernhard Rieger, Alfonso Grassi","doi":"10.3390/nano14191589","DOIUrl":null,"url":null,"abstract":"<p><p>A new nanodevice based on gold nanoparticles (AuNPs) capped with poly(diethylvinylphosphonate) (PDEVP) has been synthesized, showing interesting photophysical and thermoresponsive properties. The synthesis involves a properly designed Yttriocene catalyst coordinating the vinyl-lutidine (VL) initiator active in diethyl vinyl phosphonate polymerization. The unsaturated PDEVP chain ending was thioacetylated, deacetylated, and reacted with tetrachloroauric acid and sodium borohydride to form PDEVP-VL-capped AuNPs. The NMR, UV-Vis, and ESI-MS characterization of the metal nanoparticles confirmed the formation of the synthetic intermediates and the expected colloidal systems. AuNPs of subnanometric size were determined by WAXD and UV-Vis analysis. UV-Vis and fluorescence analysis confirmed the effective anchoring of the thiolated PDEVP to AuNPs. The formation of 50-200 nm globular structures was assessed by SEM and AFM microscopy in solid state and confirmed by DLS in aqueous dispersion. Hydrodynamic radius studies showed colloidal contraction with temperature, demonstrating thermoresponsive behavior. These properties suggest potential biomedical applications for the photoablation of malignant cells or controlled drug delivery induced by light or heat for the novel PDEVP-capped AuNP systems.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478069/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14191589","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A new nanodevice based on gold nanoparticles (AuNPs) capped with poly(diethylvinylphosphonate) (PDEVP) has been synthesized, showing interesting photophysical and thermoresponsive properties. The synthesis involves a properly designed Yttriocene catalyst coordinating the vinyl-lutidine (VL) initiator active in diethyl vinyl phosphonate polymerization. The unsaturated PDEVP chain ending was thioacetylated, deacetylated, and reacted with tetrachloroauric acid and sodium borohydride to form PDEVP-VL-capped AuNPs. The NMR, UV-Vis, and ESI-MS characterization of the metal nanoparticles confirmed the formation of the synthetic intermediates and the expected colloidal systems. AuNPs of subnanometric size were determined by WAXD and UV-Vis analysis. UV-Vis and fluorescence analysis confirmed the effective anchoring of the thiolated PDEVP to AuNPs. The formation of 50-200 nm globular structures was assessed by SEM and AFM microscopy in solid state and confirmed by DLS in aqueous dispersion. Hydrodynamic radius studies showed colloidal contraction with temperature, demonstrating thermoresponsive behavior. These properties suggest potential biomedical applications for the photoablation of malignant cells or controlled drug delivery induced by light or heat for the novel PDEVP-capped AuNP systems.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.