Thermo- and Photoresponsive Smart Nanomaterial Based on Poly(diethyl vinyl phosphonate)-Capped Gold Nanoparticles.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-10-01 DOI:10.3390/nano14191589
Antonio Buonerba, Rosita Lapenta, Francesco Della Monica, Roberto Piacentini, Lucia Baldino, Maria Rosa Scognamiglio, Vito Speranza, Stefano Milione, Carmine Capacchione, Bernhard Rieger, Alfonso Grassi
{"title":"Thermo- and Photoresponsive Smart Nanomaterial Based on Poly(diethyl vinyl phosphonate)-Capped Gold Nanoparticles.","authors":"Antonio Buonerba, Rosita Lapenta, Francesco Della Monica, Roberto Piacentini, Lucia Baldino, Maria Rosa Scognamiglio, Vito Speranza, Stefano Milione, Carmine Capacchione, Bernhard Rieger, Alfonso Grassi","doi":"10.3390/nano14191589","DOIUrl":null,"url":null,"abstract":"<p><p>A new nanodevice based on gold nanoparticles (AuNPs) capped with poly(diethylvinylphosphonate) (PDEVP) has been synthesized, showing interesting photophysical and thermoresponsive properties. The synthesis involves a properly designed Yttriocene catalyst coordinating the vinyl-lutidine (VL) initiator active in diethyl vinyl phosphonate polymerization. The unsaturated PDEVP chain ending was thioacetylated, deacetylated, and reacted with tetrachloroauric acid and sodium borohydride to form PDEVP-VL-capped AuNPs. The NMR, UV-Vis, and ESI-MS characterization of the metal nanoparticles confirmed the formation of the synthetic intermediates and the expected colloidal systems. AuNPs of subnanometric size were determined by WAXD and UV-Vis analysis. UV-Vis and fluorescence analysis confirmed the effective anchoring of the thiolated PDEVP to AuNPs. The formation of 50-200 nm globular structures was assessed by SEM and AFM microscopy in solid state and confirmed by DLS in aqueous dispersion. Hydrodynamic radius studies showed colloidal contraction with temperature, demonstrating thermoresponsive behavior. These properties suggest potential biomedical applications for the photoablation of malignant cells or controlled drug delivery induced by light or heat for the novel PDEVP-capped AuNP systems.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478069/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14191589","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A new nanodevice based on gold nanoparticles (AuNPs) capped with poly(diethylvinylphosphonate) (PDEVP) has been synthesized, showing interesting photophysical and thermoresponsive properties. The synthesis involves a properly designed Yttriocene catalyst coordinating the vinyl-lutidine (VL) initiator active in diethyl vinyl phosphonate polymerization. The unsaturated PDEVP chain ending was thioacetylated, deacetylated, and reacted with tetrachloroauric acid and sodium borohydride to form PDEVP-VL-capped AuNPs. The NMR, UV-Vis, and ESI-MS characterization of the metal nanoparticles confirmed the formation of the synthetic intermediates and the expected colloidal systems. AuNPs of subnanometric size were determined by WAXD and UV-Vis analysis. UV-Vis and fluorescence analysis confirmed the effective anchoring of the thiolated PDEVP to AuNPs. The formation of 50-200 nm globular structures was assessed by SEM and AFM microscopy in solid state and confirmed by DLS in aqueous dispersion. Hydrodynamic radius studies showed colloidal contraction with temperature, demonstrating thermoresponsive behavior. These properties suggest potential biomedical applications for the photoablation of malignant cells or controlled drug delivery induced by light or heat for the novel PDEVP-capped AuNP systems.

基于聚(乙烯基膦酸二乙酯)封端金纳米粒子的热致和光致智能纳米材料。
一种基于金纳米粒子(AuNPs)与聚(乙烯基膦酸二乙酯)(PDEVP)的新型纳米器件已经合成,并显示出有趣的光物理和热致伸缩特性。合成过程中使用了经过适当设计的 Yttriocene 催化剂,该催化剂与乙烯基-丁替啶(VL)引发剂配合,在乙烯基膦酸二乙酯聚合过程中发挥了积极作用。不饱和的 PDEVP 链尾经过硫代乙酰化、脱乙酰化并与四氯金酸和硼氢化钠反应后形成 PDEVP-VL 封端的 AuNPs。金属纳米粒子的 NMR、UV-Vis 和 ESI-MS 表征证实了合成中间体和预期胶体系统的形成。通过 WAXD 和 UV-Vis 分析确定了亚纳米尺寸的 AuNPs。紫外可见光和荧光分析证实了硫醇化 PDEVP 与 AuNPs 的有效锚定。在固态下,用扫描电子显微镜和原子力显微镜评估了 50-200 纳米球状结构的形成,在水分散状态下,用 DLS 进行了确认。流体力学半径研究表明,胶体会随着温度的升高而收缩,这证明了热致伸缩行为。这些特性表明,PDEVP 封装的新型 AuNP 系统具有潜在的生物医学应用前景,可用于光消融恶性细胞或在光或热的诱导下控制药物输送。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信