Tilek Kuanyshbekov, Kydyrmolla Akatan, Nazim Guseinov, Renata Nemkaeva, Bayan Kurbanova, Zhandos Tolepov, Malika Tulegenova, Sana Kabdrakhmanova, Almira Zhilkashinova
{"title":"Renewable Resources as Promising Materials for Obtaining Graphene Oxide-like Structures.","authors":"Tilek Kuanyshbekov, Kydyrmolla Akatan, Nazim Guseinov, Renata Nemkaeva, Bayan Kurbanova, Zhandos Tolepov, Malika Tulegenova, Sana Kabdrakhmanova, Almira Zhilkashinova","doi":"10.3390/nano14191588","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, one of the topical directions in the field of production and application of graphene-like nanostructures is the use of renewable natural raw materials, which have unlimited resources for an economically efficient large-scale yield of a product with environmental safety. In this regard, we present the production of graphene oxide (GO) from a renewable natural raw material of plant biomass, birch activated carbon (BAC), and a comparison of the obtained physicochemical, mechanical, and electrical properties of birch activated carbon-graphene oxide (BAC-GO) and graphite-graphene oxide (G-GO) synthesized from the initial materials, BAC and graphite (G). Results obtained from this study confirm the successful oxidation of BAC, which correlates well with the physical-chemical dates of the G-GO and BAC-GO samples. Change in data after the oxidation of graphite and BAC was facilitated by the structure of the starting materials and, presumably, the location and content of functional oxygen-containing groups in the G-GO and BAC-GO chains. Based on the results, the application of a cost-effective, eco-friendly colloidal solution of nanodispersed BAC-GO from a plant biomass-based high-quality resource for producing large-scale nanostructured graphene is validated which has potential applicability in nanoelectronics, medicine, and other fields.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478307/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14191588","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, one of the topical directions in the field of production and application of graphene-like nanostructures is the use of renewable natural raw materials, which have unlimited resources for an economically efficient large-scale yield of a product with environmental safety. In this regard, we present the production of graphene oxide (GO) from a renewable natural raw material of plant biomass, birch activated carbon (BAC), and a comparison of the obtained physicochemical, mechanical, and electrical properties of birch activated carbon-graphene oxide (BAC-GO) and graphite-graphene oxide (G-GO) synthesized from the initial materials, BAC and graphite (G). Results obtained from this study confirm the successful oxidation of BAC, which correlates well with the physical-chemical dates of the G-GO and BAC-GO samples. Change in data after the oxidation of graphite and BAC was facilitated by the structure of the starting materials and, presumably, the location and content of functional oxygen-containing groups in the G-GO and BAC-GO chains. Based on the results, the application of a cost-effective, eco-friendly colloidal solution of nanodispersed BAC-GO from a plant biomass-based high-quality resource for producing large-scale nanostructured graphene is validated which has potential applicability in nanoelectronics, medicine, and other fields.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.