Pooja D Walimbe, Rajeev Kumar, Amit Kumar Shringi, Obed Keelson, Hazel Achieng Ouma, Fei Yan
{"title":"Electrochemical Detection of H<sub>2</sub>O<sub>2</sub> Using Bi<sub>2</sub>O<sub>3</sub>/Bi<sub>2</sub>O<sub>2</sub>Se Nanocomposites.","authors":"Pooja D Walimbe, Rajeev Kumar, Amit Kumar Shringi, Obed Keelson, Hazel Achieng Ouma, Fei Yan","doi":"10.3390/nano14191592","DOIUrl":null,"url":null,"abstract":"<p><p>The development of high-performance hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) sensors is critical for various applications, including environmental monitoring, industrial processes, and biomedical diagnostics. This study explores the development of efficient and selective H<sub>2</sub>O<sub>2</sub> sensors based on bismuth oxide/bismuth oxyselenide (Bi<sub>2</sub>O<sub>3</sub>/Bi<sub>2</sub>O<sub>2</sub>Se) nanocomposites. The Bi<sub>2</sub>O<sub>3</sub>/Bi<sub>2</sub>O<sub>2</sub>Se nanocomposites were synthesized using a simple solution-processing method at room temperature, resulting in a unique heterostructure with remarkable electrochemical characteristics for H<sub>2</sub>O<sub>2</sub> detection. Characterization techniques, including powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), confirmed the successful formation of the nanocomposites and their structural integrity. The synthesis time was varied to obtain the composites with different Se contents. The end goal was to obtain phase pure Bi<sub>2</sub>O<sub>2</sub>Se. Electrochemical measurements revealed that the Bi<sub>2</sub>O<sub>3</sub>/Bi<sub>2</sub>O<sub>2</sub>Se composite formed under optimal synthesis conditions displayed high sensitivity (75.7 µA µM<sup>-1</sup> cm<sup>-2</sup>) and excellent selectivity towards H<sub>2</sub>O<sub>2</sub> detection, along with a wide linear detection range (0-15 µM). The superior performance is attributed to the synergistic effect between Bi<sub>2</sub>O<sub>3</sub> and Bi<sub>2</sub>O<sub>2</sub>Se, enhancing electron transfer and creating more active sites for H<sub>2</sub>O<sub>2</sub> oxidation. These findings suggest that Bi<sub>2</sub>O<sub>3</sub>/Bi<sub>2</sub>O<sub>2</sub>Se nanocomposites hold great potential as advanced H<sub>2</sub>O<sub>2</sub> sensors for practical applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478603/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14191592","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of high-performance hydrogen peroxide (H2O2) sensors is critical for various applications, including environmental monitoring, industrial processes, and biomedical diagnostics. This study explores the development of efficient and selective H2O2 sensors based on bismuth oxide/bismuth oxyselenide (Bi2O3/Bi2O2Se) nanocomposites. The Bi2O3/Bi2O2Se nanocomposites were synthesized using a simple solution-processing method at room temperature, resulting in a unique heterostructure with remarkable electrochemical characteristics for H2O2 detection. Characterization techniques, including powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), confirmed the successful formation of the nanocomposites and their structural integrity. The synthesis time was varied to obtain the composites with different Se contents. The end goal was to obtain phase pure Bi2O2Se. Electrochemical measurements revealed that the Bi2O3/Bi2O2Se composite formed under optimal synthesis conditions displayed high sensitivity (75.7 µA µM-1 cm-2) and excellent selectivity towards H2O2 detection, along with a wide linear detection range (0-15 µM). The superior performance is attributed to the synergistic effect between Bi2O3 and Bi2O2Se, enhancing electron transfer and creating more active sites for H2O2 oxidation. These findings suggest that Bi2O3/Bi2O2Se nanocomposites hold great potential as advanced H2O2 sensors for practical applications.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.