Lei Zhu, Jiaxin Zhang, Jianan Wang, Jianwei Liu, Wei Zhao, Wei Yan
{"title":"Efficient Formaldehyde Gas Sensing Performance via Promotion of Oxygen Vacancy on In-Doped LaFeO<sub>3</sub> Nanofibers.","authors":"Lei Zhu, Jiaxin Zhang, Jianan Wang, Jianwei Liu, Wei Zhao, Wei Yan","doi":"10.3390/nano14191595","DOIUrl":null,"url":null,"abstract":"<p><p>Perovskite oxide LaFeO<sub>3</sub>(LFO) emerges as a potential candidate for formaldehyde (HCHO) detection due to its exceptional electrical conductivity and abundant active metal sites. However, the sensitivity of the LFO sensor needs to be further enhanced. Herein, a series of La<sub>x</sub>In<sub>1-x</sub>FeO<sub>3</sub> (x = 1.0, 0.9, 0.8, and 0.7) nanofibers (L<sub>x</sub>In<sub>1-x</sub>FO NFs) with different ratios of La/In were obtained via the electrospinning method followed by a calcination process. Among all these L<sub>x</sub>In<sub>1-x</sub>FO NFs sensors, the sensor based on the L<sub>0.8</sub>In<sub>0.2</sub>FO NFs possessed the maximum response value of 18.8 to 100 ppm HCHO at the operating temperature of 180 °C, which was 4.47 times higher than that based on pristine LFO NFs (4.2). Furthermore, the L<sub>0.8</sub>In<sub>0.2</sub>FO NFs sensor also exhibited a rapid response/recovery time (2 s/22 s), exceptional repeatability, and long-term stability. This excellent gas sensing performance of the L<sub>0.8</sub>In<sub>0.2</sub>FO NFs can be attributed to the large number of oxygen vacancies induced by the replacement of the A-site La<sup>3+</sup> by In<sup>3+</sup>, the large specific surface area, and the porous structure. This research presents an approach to enhance the HCHO gas sensing capabilities by adjusting the introduced oxygen vacancies through the doping of A-sites in perovskite oxides.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478380/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14191595","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite oxide LaFeO3(LFO) emerges as a potential candidate for formaldehyde (HCHO) detection due to its exceptional electrical conductivity and abundant active metal sites. However, the sensitivity of the LFO sensor needs to be further enhanced. Herein, a series of LaxIn1-xFeO3 (x = 1.0, 0.9, 0.8, and 0.7) nanofibers (LxIn1-xFO NFs) with different ratios of La/In were obtained via the electrospinning method followed by a calcination process. Among all these LxIn1-xFO NFs sensors, the sensor based on the L0.8In0.2FO NFs possessed the maximum response value of 18.8 to 100 ppm HCHO at the operating temperature of 180 °C, which was 4.47 times higher than that based on pristine LFO NFs (4.2). Furthermore, the L0.8In0.2FO NFs sensor also exhibited a rapid response/recovery time (2 s/22 s), exceptional repeatability, and long-term stability. This excellent gas sensing performance of the L0.8In0.2FO NFs can be attributed to the large number of oxygen vacancies induced by the replacement of the A-site La3+ by In3+, the large specific surface area, and the porous structure. This research presents an approach to enhance the HCHO gas sensing capabilities by adjusting the introduced oxygen vacancies through the doping of A-sites in perovskite oxides.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.