Gyuri Kim, Sewon Lee, Eli Levy Karin, Hyunbin Kim, Yoshitaka Moriwaki, Sergey Ovchinnikov, Martin Steinegger, Milot Mirdita
{"title":"Easy and accurate protein structure prediction using ColabFold.","authors":"Gyuri Kim, Sewon Lee, Eli Levy Karin, Hyunbin Kim, Yoshitaka Moriwaki, Sergey Ovchinnikov, Martin Steinegger, Milot Mirdita","doi":"10.1038/s41596-024-01060-5","DOIUrl":null,"url":null,"abstract":"<p><p>Since its public release in 2021, AlphaFold2 (AF2) has made investigating biological questions, by using predicted protein structures of single monomers or full complexes, a common practice. ColabFold-AF2 is an open-source Jupyter Notebook inside Google Colaboratory and a command-line tool that makes it easy to use AF2 while exposing its advanced options. ColabFold-AF2 shortens turnaround times of experiments because of its optimized usage of AF2's models. In this protocol, we guide the reader through ColabFold best practices by using three scenarios: (i) monomer prediction, (ii) complex prediction and (iii) conformation sampling. The first two scenarios cover classic static structure prediction and are demonstrated on the human glycosylphosphatidylinositol transamidase protein. The third scenario demonstrates an alternative use case of the AF2 models by predicting two conformations of the human alanine serine transporter 2. Users can run the protocol without computational expertise via Google Colaboratory or in a command-line environment for advanced users. Using Google Colaboratory, it takes <2 h to run each procedure. The data and code for this protocol are available at https://protocol.colabfold.com .</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01060-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Since its public release in 2021, AlphaFold2 (AF2) has made investigating biological questions, by using predicted protein structures of single monomers or full complexes, a common practice. ColabFold-AF2 is an open-source Jupyter Notebook inside Google Colaboratory and a command-line tool that makes it easy to use AF2 while exposing its advanced options. ColabFold-AF2 shortens turnaround times of experiments because of its optimized usage of AF2's models. In this protocol, we guide the reader through ColabFold best practices by using three scenarios: (i) monomer prediction, (ii) complex prediction and (iii) conformation sampling. The first two scenarios cover classic static structure prediction and are demonstrated on the human glycosylphosphatidylinositol transamidase protein. The third scenario demonstrates an alternative use case of the AF2 models by predicting two conformations of the human alanine serine transporter 2. Users can run the protocol without computational expertise via Google Colaboratory or in a command-line environment for advanced users. Using Google Colaboratory, it takes <2 h to run each procedure. The data and code for this protocol are available at https://protocol.colabfold.com .
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.