Hesperidin as a bioactive compound in citrus fruits reduces N-ethyl-N-nitrosourea-induced mortality and toxicity in mice: as a model for chronic lymphocytic leukemia.
Ahmad Salimi, Bahare Asgari, Saleh Khezri, Mahshad Pourgholi, Shadi Haddadi
{"title":"Hesperidin as a bioactive compound in citrus fruits reduces N-ethyl-N-nitrosourea-induced mortality and toxicity in mice: as a model for chronic lymphocytic leukemia.","authors":"Ahmad Salimi, Bahare Asgari, Saleh Khezri, Mahshad Pourgholi, Shadi Haddadi","doi":"10.1007/s00210-024-03531-8","DOIUrl":null,"url":null,"abstract":"<p><p>The current study is aimed at determining the preventive effects of hesperidin against death, weight changes, cellular damage, and oxidative stress in mice induced by n-ethyl-n-nitrosourea as a chronic lymphocytic leukemia (CLL) model. Female mice were pretreated with hesperidin (20 mg/kg, intraperitoneally, daily for 30 days). Next, the animals received a single intraperitoneal injection of 80 mg/kg ENU on the 30th. Changes in weight and mortality were monitored for 120 days, and then the animals were sacrificed and parameters such as reactive oxygen species (ROS), mitochondrial dysfunction, lysosomal membrane integrity, oxidized/reduced glutathione (GSH/GSSG), and malondialdehyde (MDA) were analyzed in isolated lymphocytes. Hesperidin significantly increases the survival of mice up to 86% and delay in death time and prevents weight changes after exposure to ENU. Also, hesperidin improved cellular toxicity parameters such as ROS formation, MMP collapse, lysosomal membrane destabilization, and lipid peroxidation in isolated lymphocytes. These results promisingly showed that pretreatment with hesperidin increases delay in death time and reduces mortality cellular toxicities consistent with the carcinogenicity of alkylating compounds. This study confirms that the consumption of hesperidin and citrus most likely inhibits alkylating agents-induced carcinogenicity and toxicity.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":"4009-4018"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03531-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The current study is aimed at determining the preventive effects of hesperidin against death, weight changes, cellular damage, and oxidative stress in mice induced by n-ethyl-n-nitrosourea as a chronic lymphocytic leukemia (CLL) model. Female mice were pretreated with hesperidin (20 mg/kg, intraperitoneally, daily for 30 days). Next, the animals received a single intraperitoneal injection of 80 mg/kg ENU on the 30th. Changes in weight and mortality were monitored for 120 days, and then the animals were sacrificed and parameters such as reactive oxygen species (ROS), mitochondrial dysfunction, lysosomal membrane integrity, oxidized/reduced glutathione (GSH/GSSG), and malondialdehyde (MDA) were analyzed in isolated lymphocytes. Hesperidin significantly increases the survival of mice up to 86% and delay in death time and prevents weight changes after exposure to ENU. Also, hesperidin improved cellular toxicity parameters such as ROS formation, MMP collapse, lysosomal membrane destabilization, and lipid peroxidation in isolated lymphocytes. These results promisingly showed that pretreatment with hesperidin increases delay in death time and reduces mortality cellular toxicities consistent with the carcinogenicity of alkylating compounds. This study confirms that the consumption of hesperidin and citrus most likely inhibits alkylating agents-induced carcinogenicity and toxicity.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.