Yuri Kreinin, Pat Gunn, Dmitri Chklovskii, Jingpeng Wu
{"title":"High-fidelity Image Restoration of Large 3D Electron Microscopy Volume.","authors":"Yuri Kreinin, Pat Gunn, Dmitri Chklovskii, Jingpeng Wu","doi":"10.1093/mam/ozae098","DOIUrl":null,"url":null,"abstract":"<p><p>Volume electron microscopy (VEM) is an essential tool for studying biological structures. Due to the challenges of sample preparation and continuous volumetric imaging, image artifacts are almost inevitable. Such image artifacts complicate further processing both for automated computer vision methods and human experts. Unfortunately, the widely used contrast limited adaptive histogram equalization (CLAHE) can alter the essential relative contrast information about some biological structures. We developed an image-processing pipeline to remove the artifacts and enhance the images without CLAHE. We apply our method to VEM datasets of a Microwasp head. We demonstrate that our method restores the images with high fidelity while preserving the original relative contrast. This pipeline is adaptable to other VEM datasets.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"889-902"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae098","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Volume electron microscopy (VEM) is an essential tool for studying biological structures. Due to the challenges of sample preparation and continuous volumetric imaging, image artifacts are almost inevitable. Such image artifacts complicate further processing both for automated computer vision methods and human experts. Unfortunately, the widely used contrast limited adaptive histogram equalization (CLAHE) can alter the essential relative contrast information about some biological structures. We developed an image-processing pipeline to remove the artifacts and enhance the images without CLAHE. We apply our method to VEM datasets of a Microwasp head. We demonstrate that our method restores the images with high fidelity while preserving the original relative contrast. This pipeline is adaptable to other VEM datasets.
期刊介绍:
Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.