Prasanna Honnavar, Arunaloke Chakrabarti, Jillwin Joseph, Sheetal Thakur, Sunil Dogra, P V M Lakshmi, Shivaprakash M Rudramurthy
{"title":"Molecular epidemiology of seborrheic dermatitis/dandruff associated Malassezia species from northern India.","authors":"Prasanna Honnavar, Arunaloke Chakrabarti, Jillwin Joseph, Sheetal Thakur, Sunil Dogra, P V M Lakshmi, Shivaprakash M Rudramurthy","doi":"10.1093/mmy/myae104","DOIUrl":null,"url":null,"abstract":"<p><p>Malassezia is a commensal that sometimes becomes pathogenic under the influence of diverse factors. Several species of Malassezia are difficult to culture, making traditional methods of identification challenging. The problem with molecular typing of Malassezia in association with seborrheic dermatitis/dandruff (SD/D) arises due to the unavailability of these fastidious yeast cultures. The aim of the study was to investigate the association between fluorescent amplified fragment length polymorphism (FAFLP) genotypes, disease state (SD/D), and the geographic distribution of M. globosa, M. restricta, and M. arunalokei. In total, 154 isolates representing M. globosa (n = 85), M. restricta (n = 55), and M. arunalokei (n = 14) from lesional/non-lesional areas of SD/D patients and healthy controls residing in the rural (n = 77) and urban (n = 77) areas of northern India were included. A strategy based on the FAFLP methodology was developed using two endonuclease enzymes (EcoRI and HindIII). M. globosa, M. restricta, and M. arunalokei formed 11, 3, and 2 FAFLP clusters, respectively. Disease-specific strains of M. restricta and M. arunalokei preferentially tend to cause SD/D. M. restricta and M. arunalokei showed less genetic variation. M.globosa showed higher genetic diversity. FAFLP clusters revealed the existence of geographically specific strains in M. restricta, M. arunalokei, and M. globosa. Our findings suggest that certain Malassezia strains are not only disease-specific but also geographically distinct.</p>","PeriodicalId":18586,"journal":{"name":"Medical mycology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical mycology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/mmy/myae104","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Malassezia is a commensal that sometimes becomes pathogenic under the influence of diverse factors. Several species of Malassezia are difficult to culture, making traditional methods of identification challenging. The problem with molecular typing of Malassezia in association with seborrheic dermatitis/dandruff (SD/D) arises due to the unavailability of these fastidious yeast cultures. The aim of the study was to investigate the association between fluorescent amplified fragment length polymorphism (FAFLP) genotypes, disease state (SD/D), and the geographic distribution of M. globosa, M. restricta, and M. arunalokei. In total, 154 isolates representing M. globosa (n = 85), M. restricta (n = 55), and M. arunalokei (n = 14) from lesional/non-lesional areas of SD/D patients and healthy controls residing in the rural (n = 77) and urban (n = 77) areas of northern India were included. A strategy based on the FAFLP methodology was developed using two endonuclease enzymes (EcoRI and HindIII). M. globosa, M. restricta, and M. arunalokei formed 11, 3, and 2 FAFLP clusters, respectively. Disease-specific strains of M. restricta and M. arunalokei preferentially tend to cause SD/D. M. restricta and M. arunalokei showed less genetic variation. M.globosa showed higher genetic diversity. FAFLP clusters revealed the existence of geographically specific strains in M. restricta, M. arunalokei, and M. globosa. Our findings suggest that certain Malassezia strains are not only disease-specific but also geographically distinct.
期刊介绍:
Medical Mycology is a peer-reviewed international journal that focuses on original and innovative basic and applied studies, as well as learned reviews on all aspects of medical, veterinary and environmental mycology as related to disease. The objective is to present the highest quality scientific reports from throughout the world on divergent topics. These topics include the phylogeny of fungal pathogens, epidemiology and public health mycology themes, new approaches in the diagnosis and treatment of mycoses including clinical trials and guidelines, pharmacology and antifungal susceptibilities, changes in taxonomy, description of new or unusual fungi associated with human or animal disease, immunology of fungal infections, vaccinology for prevention of fungal infections, pathogenesis and virulence, and the molecular biology of pathogenic fungi in vitro and in vivo, including genomics, transcriptomics, metabolomics, and proteomics. Case reports are no longer accepted. In addition, studies of natural products showing inhibitory activity against pathogenic fungi are not accepted without chemical characterization and identification of the compounds responsible for the inhibitory activity.