Lung function and blood gas of rats after different protocols of hypobaric exposure.

IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Medical Gas Research Pub Date : 2025-03-01 Epub Date: 2024-10-02 DOI:10.4103/mgr.MEDGASRES-D-24-00039
Lijun Yin, Yukun Wen, Zhixin Liang, Zhenbiao Guan, Xuhua Yu, Jiajun Xu, Shifeng Wang, Wenwu Liu
{"title":"Lung function and blood gas of rats after different protocols of hypobaric exposure.","authors":"Lijun Yin, Yukun Wen, Zhixin Liang, Zhenbiao Guan, Xuhua Yu, Jiajun Xu, Shifeng Wang, Wenwu Liu","doi":"10.4103/mgr.MEDGASRES-D-24-00039","DOIUrl":null,"url":null,"abstract":"<p><p>High-altitude pulmonary edema (HAPE) is a common disease observed in climbers, skiers and soldiers who ascend to high altitudes without previous acclimatization. Thus, a reliable and reproducible animal model that can mimic the mechanisms of pathophysiologic response in humans is crucial for successful investigations. Our results showed that exposure to 4500 m for 2 days had little influence on lung function or blood gas, and exposure to 6000 m for 2 or 3 days could change lung function and blood gas, but most parameters returned to nearly normal levels within 48 hours. This study indicates that exposure to 6000 m for 3 days may induce evident lung edema and significantly alter lung function and blood gas, which may mimic HAPE in clinical practice. Thus, this animal model of HAPE may be used in future studies on HAPE.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-altitude pulmonary edema (HAPE) is a common disease observed in climbers, skiers and soldiers who ascend to high altitudes without previous acclimatization. Thus, a reliable and reproducible animal model that can mimic the mechanisms of pathophysiologic response in humans is crucial for successful investigations. Our results showed that exposure to 4500 m for 2 days had little influence on lung function or blood gas, and exposure to 6000 m for 2 or 3 days could change lung function and blood gas, but most parameters returned to nearly normal levels within 48 hours. This study indicates that exposure to 6000 m for 3 days may induce evident lung edema and significantly alter lung function and blood gas, which may mimic HAPE in clinical practice. Thus, this animal model of HAPE may be used in future studies on HAPE.

不同低压暴露方案后大鼠的肺功能和血气。
高海拔肺水肿(HAPE)是登山者、滑雪者和士兵在未适应高海拔地区的一种常见疾病。因此,一个能模拟人类病理生理反应机制的可靠且可重复的动物模型对研究的成功至关重要。我们的研究结果表明,暴露在海拔 4500 米的环境中 2 天对肺功能和血气影响不大,而暴露在海拔 6000 米的环境中 2 或 3 天可改变肺功能和血气,但大多数参数在 48 小时内几乎恢复到正常水平。本研究表明,暴露于 6000 米水下 3 天可诱发明显的肺水肿,并显著改变肺功能和血气,这可能与临床实践中的 HAPE 相似。因此,这种 HAPE 动物模型可用于今后的 HAPE 研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical Gas Research
Medical Gas Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
5.10
自引率
13.80%
发文量
35
期刊介绍: Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信