Tong Wang, Nannan Zhou, Feifei Ding, Zhenzhen Hao, Jorge Galindo-Villegas, Zhenyu Du, Xiaoyun Su, Meiling Zhang
{"title":"Xylanase enhances gut microbiota-derived butyrate to exert immune-protective effects in a histone deacetylase-dependent manner.","authors":"Tong Wang, Nannan Zhou, Feifei Ding, Zhenzhen Hao, Jorge Galindo-Villegas, Zhenyu Du, Xiaoyun Su, Meiling Zhang","doi":"10.1186/s40168-024-01934-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Commensal bacteria in the intestine release enzymes to degrade and ferment dietary components, producing beneficial metabolites. However, the regulatory effects of microbial-derived enzymes on the intestinal microbiota composition and the influence on host health remain elusive. Xylanase can degrade xylan into oligosaccharides, showing wide application in feed industry.</p><p><strong>Results: </strong>To validate the immune-protective effects of xylanase, Nile tilapia was used as the model and fed with xylanase. The results showed that dietary xylanase improved the survival rate of Nile tilapia when they were challenged with Aeromonas hydrophila. The transcriptome analysis showed significant enrichment of genes related to interleukin-17d (il-17d) signaling pathway in the xylanase treatment group. High-throughput sequencing revealed that dietary xylanase altered the composition of the intestinal microbiota and directly promoted the proliferation of Allobaculum stercoricanis which could produce butyrate in vitro. Consequently, dietary xylanase supplementation increased the butyrate level in fish gut. Further experiment verified that butyrate supplementation enhanced the expression of il-17d and regenerating islet-derived 3 gamma (reg3g) in the gut. The knockdown experiment of il-17d confirmed that il-17d is necessary for butyrate to protect Nile tilapia from pathogen resistance. Flow cytometry analysis indicated that butyrate increased the abundance of IL-17D<sup>+</sup> intestinal epithelial cells in fish. Mechanistically, butyrate functions as an HDAC3 inhibitor, enhancing il-17d expression and playing a crucial role in pathogen resistance.</p><p><strong>Conclusion: </strong>Dietary xylanase significantly altered the composition of intestinal microbiota and increased the content of butyrate in the intestine. Butyrate activated the transcription of il-17d in intestinal epithelial cells by inhibiting histone deacetylase 3, thereby protecting the Nile tilapia from pathogen infection. This study elucidated how microbial-derived xylanase regulates host immune function, providing a theoretical basis for the development and application of functional enzymes. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"212"},"PeriodicalIF":13.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492574/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-01934-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Commensal bacteria in the intestine release enzymes to degrade and ferment dietary components, producing beneficial metabolites. However, the regulatory effects of microbial-derived enzymes on the intestinal microbiota composition and the influence on host health remain elusive. Xylanase can degrade xylan into oligosaccharides, showing wide application in feed industry.
Results: To validate the immune-protective effects of xylanase, Nile tilapia was used as the model and fed with xylanase. The results showed that dietary xylanase improved the survival rate of Nile tilapia when they were challenged with Aeromonas hydrophila. The transcriptome analysis showed significant enrichment of genes related to interleukin-17d (il-17d) signaling pathway in the xylanase treatment group. High-throughput sequencing revealed that dietary xylanase altered the composition of the intestinal microbiota and directly promoted the proliferation of Allobaculum stercoricanis which could produce butyrate in vitro. Consequently, dietary xylanase supplementation increased the butyrate level in fish gut. Further experiment verified that butyrate supplementation enhanced the expression of il-17d and regenerating islet-derived 3 gamma (reg3g) in the gut. The knockdown experiment of il-17d confirmed that il-17d is necessary for butyrate to protect Nile tilapia from pathogen resistance. Flow cytometry analysis indicated that butyrate increased the abundance of IL-17D+ intestinal epithelial cells in fish. Mechanistically, butyrate functions as an HDAC3 inhibitor, enhancing il-17d expression and playing a crucial role in pathogen resistance.
Conclusion: Dietary xylanase significantly altered the composition of intestinal microbiota and increased the content of butyrate in the intestine. Butyrate activated the transcription of il-17d in intestinal epithelial cells by inhibiting histone deacetylase 3, thereby protecting the Nile tilapia from pathogen infection. This study elucidated how microbial-derived xylanase regulates host immune function, providing a theoretical basis for the development and application of functional enzymes. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.