Seasonal variations of microbial communities and viral diversity in fishery-enhanced marine ranching sediments: insights into metabolic potentials and ecological interactions.

IF 13.8 1区 生物学 Q1 MICROBIOLOGY
Cheng-Zhuang Chen, Ping Li, Ling Liu, Yong-Jun Sun, Wen-Ming Ju, Zhi-Hua Li
{"title":"Seasonal variations of microbial communities and viral diversity in fishery-enhanced marine ranching sediments: insights into metabolic potentials and ecological interactions.","authors":"Cheng-Zhuang Chen, Ping Li, Ling Liu, Yong-Jun Sun, Wen-Ming Ju, Zhi-Hua Li","doi":"10.1186/s40168-024-01922-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The ecosystems of marine ranching have enhanced marine biodiversity and ecological balance and have promoted the natural recovery and enhancement of fishery resources. The microbial communities of these ecosystems, including bacteria, fungi, protists, and viruses, are the drivers of biogeochemical cycles. Although seasonal changes in microbial communities are critical for ecosystem functioning, the current understanding of microbial-driven metabolic properties and their viral communities in marine sediments remains limited. Here, we employed amplicon (16S and 18S) and metagenomic approaches aiming to reveal the seasonal patterns of microbial communities, bacterial-eukaryotic interactions, whole metabolic potential, and their coupling mechanisms with carbon (C), nitrogen (N), and sulfur (S) cycling in marine ranching sediments. Additionally, the characterization and diversity of viral communities in different seasons were explored in marine ranching sediments.</p><p><strong>Results: </strong>The current study demonstrated that seasonal variations dramatically affected the diversity of microbial communities in marine ranching sediments and the bacterial-eukaryotic interkingdom co-occurrence networks. Metabolic reconstruction of the 113 medium to high-quality metagenome-assembled genomes (MAGs) was conducted, and a total of 8 MAGs involved in key metabolic genes and pathways (methane oxidation - denitrification - S oxidation), suggesting a possible coupling effect between the C, N, and S cycles. In total, 338 viral operational taxonomic units (vOTUs) were identified, all possessing specific ecological characteristics in different seasons and primarily belonging to Caudoviricetes, revealing their widespread distribution and variety in marine sediment ecosystems. In addition, predicted virus-host linkages showed that high host specificity was observed, with few viruses associated with specific hosts.</p><p><strong>Conclusions: </strong>This finding deepens our knowledge of element cycling and viral diversity in fisheries enrichment ecosystems, providing insights into microbial-virus interactions in marine sediments and their effects on biogeochemical cycling. These findings have potential applications in marine ranching management and ecological conservation. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"209"},"PeriodicalIF":13.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492486/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-01922-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The ecosystems of marine ranching have enhanced marine biodiversity and ecological balance and have promoted the natural recovery and enhancement of fishery resources. The microbial communities of these ecosystems, including bacteria, fungi, protists, and viruses, are the drivers of biogeochemical cycles. Although seasonal changes in microbial communities are critical for ecosystem functioning, the current understanding of microbial-driven metabolic properties and their viral communities in marine sediments remains limited. Here, we employed amplicon (16S and 18S) and metagenomic approaches aiming to reveal the seasonal patterns of microbial communities, bacterial-eukaryotic interactions, whole metabolic potential, and their coupling mechanisms with carbon (C), nitrogen (N), and sulfur (S) cycling in marine ranching sediments. Additionally, the characterization and diversity of viral communities in different seasons were explored in marine ranching sediments.

Results: The current study demonstrated that seasonal variations dramatically affected the diversity of microbial communities in marine ranching sediments and the bacterial-eukaryotic interkingdom co-occurrence networks. Metabolic reconstruction of the 113 medium to high-quality metagenome-assembled genomes (MAGs) was conducted, and a total of 8 MAGs involved in key metabolic genes and pathways (methane oxidation - denitrification - S oxidation), suggesting a possible coupling effect between the C, N, and S cycles. In total, 338 viral operational taxonomic units (vOTUs) were identified, all possessing specific ecological characteristics in different seasons and primarily belonging to Caudoviricetes, revealing their widespread distribution and variety in marine sediment ecosystems. In addition, predicted virus-host linkages showed that high host specificity was observed, with few viruses associated with specific hosts.

Conclusions: This finding deepens our knowledge of element cycling and viral diversity in fisheries enrichment ecosystems, providing insights into microbial-virus interactions in marine sediments and their effects on biogeochemical cycling. These findings have potential applications in marine ranching management and ecological conservation. Video Abstract.

渔业强化海洋牧场沉积物中微生物群落和病毒多样性的季节性变化:代谢潜力和生态相互作用的启示。
背景:海洋牧场生态系统提高了海洋生物多样性和生态平衡,促进了渔业资源的自然恢复和增殖。这些生态系统中的微生物群落,包括细菌、真菌、原生生物和病毒,是生物地球化学循环的驱动力。虽然微生物群落的季节性变化对生态系统的功能至关重要,但目前对海洋沉积物中微生物驱动的代谢特性及其病毒群落的了解仍然有限。在此,我们采用了扩增子(16S 和 18S)和元基因组方法,旨在揭示海洋牧场沉积物中微生物群落的季节性模式、细菌与真核生物的相互作用、整体代谢潜力及其与碳(C)、氮(N)和硫(S)循环的耦合机制。此外,还探讨了不同季节海洋牧场沉积物中病毒群落的特征和多样性:目前的研究表明,季节变化极大地影响了海洋牧场沉积物中微生物群落的多样性以及细菌-真核生物界间共生网络。对113个中高质量元基因组(MAGs)进行了代谢重建,共有8个MAGs涉及关键代谢基因和途径(甲烷氧化-反硝化-S氧化),表明C、N、S循环之间可能存在耦合效应。总共确定了 338 个病毒操作分类单元(vOTUs),它们在不同季节都具有特定的生态特征,主要属于尾状病毒科(Caudoviricetes),揭示了它们在海洋沉积物生态系统中的广泛分布和多样性。此外,预测的病毒-宿主联系表明,宿主具有高度特异性,很少有病毒与特定宿主相关联:结论:这一发现加深了我们对渔业增殖生态系统中元素循环和病毒多样性的认识,为了解海洋沉积物中微生物与病毒的相互作用及其对生物地球化学循环的影响提供了见解。这些发现有可能应用于海洋牧场管理和生态保护。视频摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiome
Microbiome MICROBIOLOGY-
CiteScore
21.90
自引率
2.60%
发文量
198
审稿时长
4 weeks
期刊介绍: Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信