Personalized oncology in pheochromocytomas and paragangliomas: integrating genetic analysis with machine learning.

IF 2.8 4区 医学 Q2 ONCOLOGY
Abida, Abdullah R Alzahrani, Hayaa M Alhuthali, Afnan Alkathiri, Ruba Omar M Almaghrabi, Jawaher Mohammad Alshehri, Syed Mohammed Basheeruddin Asdaq, Mohd Imran
{"title":"Personalized oncology in pheochromocytomas and paragangliomas: integrating genetic analysis with machine learning.","authors":"Abida, Abdullah R Alzahrani, Hayaa M Alhuthali, Afnan Alkathiri, Ruba Omar M Almaghrabi, Jawaher Mohammad Alshehri, Syed Mohammed Basheeruddin Asdaq, Mohd Imran","doi":"10.1007/s12032-024-02532-0","DOIUrl":null,"url":null,"abstract":"<p><p>Pheochromocytomas and paragangliomas (PCCs/PGLs) are uncommon neuroendocrine tumors with a significant genetic tendency. Approximately 35-40% of these tumors are associated with genetic factors. The present study performed a thorough analysis using publicly accessible genetic and clinical data from the Cancer Genome Atlas (TCGA) to examine the involvement of six genes, namely GBP1, KIF13B, GPT, CSDE1, CEP164, and CLCA1, in the development of PCCs/PGLs. By employing multi-omics data, this study investigates the relationship between mutational patterns and the prognosis of tumors, focusing on the possibility of tailoring treatment methods to individual patients. The study utilizes Mutect2 to detect somatic mutations with high confidence in whole-exome sequencing data from PCCG samples. The study uncovers mild effects on protein function caused by particular mutations, including GBP1 (p.Cys12Tyr), KIF13B (p.Arg847Gly), and GPT (p.Gln50Arg). A random forest classifier uses mutational profiles to predict potential drug recommendations, proposing a focused therapy strategy. This study thoroughly analyzes the genetic mutations found in PCCs/PGLs, highlighting the significance of precision medicine in developing specific treatments for these uncommon types of cancer. This study aims to improve the understanding of the development of tumors and identify personalized treatment approaches by combining genetic data with machine learning analyses.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"41 11","pages":"290"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-024-02532-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pheochromocytomas and paragangliomas (PCCs/PGLs) are uncommon neuroendocrine tumors with a significant genetic tendency. Approximately 35-40% of these tumors are associated with genetic factors. The present study performed a thorough analysis using publicly accessible genetic and clinical data from the Cancer Genome Atlas (TCGA) to examine the involvement of six genes, namely GBP1, KIF13B, GPT, CSDE1, CEP164, and CLCA1, in the development of PCCs/PGLs. By employing multi-omics data, this study investigates the relationship between mutational patterns and the prognosis of tumors, focusing on the possibility of tailoring treatment methods to individual patients. The study utilizes Mutect2 to detect somatic mutations with high confidence in whole-exome sequencing data from PCCG samples. The study uncovers mild effects on protein function caused by particular mutations, including GBP1 (p.Cys12Tyr), KIF13B (p.Arg847Gly), and GPT (p.Gln50Arg). A random forest classifier uses mutational profiles to predict potential drug recommendations, proposing a focused therapy strategy. This study thoroughly analyzes the genetic mutations found in PCCs/PGLs, highlighting the significance of precision medicine in developing specific treatments for these uncommon types of cancer. This study aims to improve the understanding of the development of tumors and identify personalized treatment approaches by combining genetic data with machine learning analyses.

嗜铬细胞瘤和副神经节瘤的个性化肿瘤学:将基因分析与机器学习相结合。
嗜铬细胞瘤和副神经节瘤(PCCs/PGLs)是不常见的神经内分泌肿瘤,具有明显的遗传倾向。这些肿瘤中约有 35-40% 与遗传因素有关。本研究利用癌症基因组图谱(TCGA)中可公开获取的遗传和临床数据进行了深入分析,研究了GBP1、KIF13B、GPT、CSDE1、CEP164和CLCA1这六个基因参与PCCs/PGLs发病的情况。本研究利用多组学数据,探讨了突变模式与肿瘤预后之间的关系,重点研究了根据患者个体情况定制治疗方法的可能性。该研究利用 Mutect2 在 PCCG 样本的全外显子组测序数据中以高置信度检测体细胞突变。研究发现了特定突变对蛋白质功能的轻微影响,包括GBP1(p.Cys12Tyr)、KIF13B(p.Arg847Gly)和GPT(p.Gln50Arg)。随机森林分类器利用突变特征预测潜在的药物推荐,提出了有针对性的治疗策略。这项研究深入分析了PCCs/PGLs中发现的基因突变,凸显了精准医学在开发针对这些不常见癌症类型的特定治疗方法方面的重要意义。这项研究旨在通过将基因数据与机器学习分析相结合,加深对肿瘤发生发展的理解,并确定个性化的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical Oncology
Medical Oncology 医学-肿瘤学
CiteScore
4.20
自引率
2.90%
发文量
259
审稿时长
1.4 months
期刊介绍: Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信