{"title":"Causal and mediating effects of lipid and facial aging: association study integrating GWAS, eQTL, mQTL, and pQTL data.","authors":"Mingjian Zhao, Zhanchen He, Lukuan Liu, Yichen Wang, LinQi Gao, Yuxuan Shang, Mengru Zhu","doi":"10.1186/s12944-024-02328-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Increasing evidence suggests a potential causal association between lipid levels and facial aging. The aim of this study was to investigate the relationship between levels of specific lipids and facial aging via Mendelian randomization methods. Additionally, this study aimed to identify mediators and explore relevant genes and drug targets.</p><p><strong>Methods: </strong>In this study, genome-wide association data on plasma lipids from 7,174 Finnish individuals in the UK Biobank were used. Two-sample Mendelian randomization was applied to assess the causal effects of specific lipids on facial aging. Sensitivity and pleiotropy analyses were conducted to ensure the robustness and reliability of the results. Multivariate Mendelian randomization was conducted to account for the potential impact of confounding factors. Furthermore, summary-data-based Mendelian randomization was used to identify relevant genes, which were validated through multiomics data. Finally, drug‒gene interactions were explored via molecular docking techniques.</p><p><strong>Results: </strong>Two-sample Mendelian randomization analysis revealed a causal relationship between lipid levels and facial aging. According to the multivariate Mendelian randomization results, smoking was found to mediate this association, and these lipids remained significantly associated with facial aging, even after accounting for environmental confounders. Using summary-data-based Mendelian randomization, CYP21A2, CCND1, PSMA4, and MED1 were identified as potential gene targets, with MED1 further validated through pQTL and mQTL data. Additionally, the MED1 protein was found to bind spontaneously with astragalin, fenofibrate, and ginsenoside.</p><p><strong>Conclusions: </strong>The results revealed a causal relationship between lipid levels and facial aging, revealing key gene targets that were still significantly associated with facial aging after controlling for environmental confounders. Additionally, the interactions between MED1 and certain drugs may indicate potential pathways for therapeutic interventions related to facial aging.</p>","PeriodicalId":18073,"journal":{"name":"Lipids in Health and Disease","volume":"23 1","pages":"342"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492622/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipids in Health and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12944-024-02328-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Increasing evidence suggests a potential causal association between lipid levels and facial aging. The aim of this study was to investigate the relationship between levels of specific lipids and facial aging via Mendelian randomization methods. Additionally, this study aimed to identify mediators and explore relevant genes and drug targets.
Methods: In this study, genome-wide association data on plasma lipids from 7,174 Finnish individuals in the UK Biobank were used. Two-sample Mendelian randomization was applied to assess the causal effects of specific lipids on facial aging. Sensitivity and pleiotropy analyses were conducted to ensure the robustness and reliability of the results. Multivariate Mendelian randomization was conducted to account for the potential impact of confounding factors. Furthermore, summary-data-based Mendelian randomization was used to identify relevant genes, which were validated through multiomics data. Finally, drug‒gene interactions were explored via molecular docking techniques.
Results: Two-sample Mendelian randomization analysis revealed a causal relationship between lipid levels and facial aging. According to the multivariate Mendelian randomization results, smoking was found to mediate this association, and these lipids remained significantly associated with facial aging, even after accounting for environmental confounders. Using summary-data-based Mendelian randomization, CYP21A2, CCND1, PSMA4, and MED1 were identified as potential gene targets, with MED1 further validated through pQTL and mQTL data. Additionally, the MED1 protein was found to bind spontaneously with astragalin, fenofibrate, and ginsenoside.
Conclusions: The results revealed a causal relationship between lipid levels and facial aging, revealing key gene targets that were still significantly associated with facial aging after controlling for environmental confounders. Additionally, the interactions between MED1 and certain drugs may indicate potential pathways for therapeutic interventions related to facial aging.
期刊介绍:
Lipids in Health and Disease is an open access, peer-reviewed, journal that publishes articles on all aspects of lipids: their biochemistry, pharmacology, toxicology, role in health and disease, and the synthesis of new lipid compounds.
Lipids in Health and Disease is aimed at all scientists, health professionals and physicians interested in the area of lipids. Lipids are defined here in their broadest sense, to include: cholesterol, essential fatty acids, saturated fatty acids, phospholipids, inositol lipids, second messenger lipids, enzymes and synthetic machinery that is involved in the metabolism of various lipids in the cells and tissues, and also various aspects of lipid transport, etc. In addition, the journal also publishes research that investigates and defines the role of lipids in various physiological processes, pathology and disease. In particular, the journal aims to bridge the gap between the bench and the clinic by publishing articles that are particularly relevant to human diseases and the role of lipids in the management of various diseases.