The proliferation and viability of human periodontal ligament stem cells cultured on polymeric scaffolds can be improved by low-level laser irradiation.

IF 2.1 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Jadson Alexandre Silva Lira, Vladimir Galdino Sabino, Evaldo Henrique Pessoa da Costa, João Victor Freire de Paula, Hugo Alexandre de Oliveira Rocha, Carlos Eduardo Bezerra de Moura, Carlos Augusto Galvão Barboza
{"title":"The proliferation and viability of human periodontal ligament stem cells cultured on polymeric scaffolds can be improved by low-level laser irradiation.","authors":"Jadson Alexandre Silva Lira, Vladimir Galdino Sabino, Evaldo Henrique Pessoa da Costa, João Victor Freire de Paula, Hugo Alexandre de Oliveira Rocha, Carlos Eduardo Bezerra de Moura, Carlos Augusto Galvão Barboza","doi":"10.1007/s10103-024-04210-z","DOIUrl":null,"url":null,"abstract":"<p><p>This study assessed the impact of low-level laser irradiation on the viability and proliferation of human periodontal ligament stem cells (hPDLSCs) cultivated on polylactic acid (PLA) scaffolds. hPDLSCs were obtained, characterized, and grown on the surface of PLA films produced via the solvent casting technique. The study involved two groups: the control group, which was not exposed to radiation, and the laser group, which was irradiated with a diode laser (InGaAIP) with a power of 30 mW, a wavelength of 660 nm, and a single dose of 1 J/cm² emitted continuously. Cell viability was assessed 24 and 48 hours after irradiation using the Alamar blue and Live/Dead assays. Flow cytometry was used to assess cell cycle events, and scanning electron microscopy (SEM) was used to evaluate the interaction between cells and the biomaterial. The results revealed a statistically significant increase in cell metabolic activity in the laser group compared with the control group at 24 hours (p <0.05) and 48 hours (p <0.001), as indicated by the Alamar blue assay. The Live/Dead assay also revealed a greater density of viable cells in the laser group. The cell cycle analysis revealed a significant increase in the number of cells in the proliferative phase (G2/M) in the laser group compared with the control group (p <0.001). The SEM images demonstrated that the irradiated group had a greater concentration of cells while still maintaining their cell shape and projections. This study demonstrated that photobiomodulation can increase the viability and proliferation of periodontal stem cells cultured on PLA scaffolds, suggesting the potential of this protocol for future studies on periodontal tissue engineering.</p>","PeriodicalId":17978,"journal":{"name":"Lasers in Medical Science","volume":"39 1","pages":"261"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Medical Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10103-024-04210-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study assessed the impact of low-level laser irradiation on the viability and proliferation of human periodontal ligament stem cells (hPDLSCs) cultivated on polylactic acid (PLA) scaffolds. hPDLSCs were obtained, characterized, and grown on the surface of PLA films produced via the solvent casting technique. The study involved two groups: the control group, which was not exposed to radiation, and the laser group, which was irradiated with a diode laser (InGaAIP) with a power of 30 mW, a wavelength of 660 nm, and a single dose of 1 J/cm² emitted continuously. Cell viability was assessed 24 and 48 hours after irradiation using the Alamar blue and Live/Dead assays. Flow cytometry was used to assess cell cycle events, and scanning electron microscopy (SEM) was used to evaluate the interaction between cells and the biomaterial. The results revealed a statistically significant increase in cell metabolic activity in the laser group compared with the control group at 24 hours (p <0.05) and 48 hours (p <0.001), as indicated by the Alamar blue assay. The Live/Dead assay also revealed a greater density of viable cells in the laser group. The cell cycle analysis revealed a significant increase in the number of cells in the proliferative phase (G2/M) in the laser group compared with the control group (p <0.001). The SEM images demonstrated that the irradiated group had a greater concentration of cells while still maintaining their cell shape and projections. This study demonstrated that photobiomodulation can increase the viability and proliferation of periodontal stem cells cultured on PLA scaffolds, suggesting the potential of this protocol for future studies on periodontal tissue engineering.

在聚合物支架上培养的人类牙周韧带干细胞的增殖和活力可通过低强度激光照射得到改善。
本研究评估了低强度激光照射对在聚乳酸(PLA)支架上培养的人牙周韧带干细胞(hPDLSCs)的活力和增殖的影响。hPDLSCs是在通过溶剂浇铸技术生产的聚乳酸薄膜表面上获得、鉴定和生长的。研究分为两组:对照组(不接受辐射)和激光组(接受功率为 30 mW、波长为 660 nm、单剂量为 1 J/cm² 的二极管激光器(InGaAIP )连续照射)。照射 24 小时和 48 小时后,使用阿拉玛蓝和活/死检测法评估细胞活力。流式细胞仪用于评估细胞周期事件,扫描电子显微镜(SEM)用于评估细胞与生物材料之间的相互作用。结果显示,与对照组相比,激光组的细胞代谢活性在 24 小时内有显著的统计学增长(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lasers in Medical Science
Lasers in Medical Science 医学-工程:生物医学
CiteScore
4.50
自引率
4.80%
发文量
192
审稿时长
3-8 weeks
期刊介绍: Lasers in Medical Science (LIMS) has established itself as the leading international journal in the rapidly expanding field of medical and dental applications of lasers and light. It provides a forum for the publication of papers on the technical, experimental, and clinical aspects of the use of medical lasers, including lasers in surgery, endoscopy, angioplasty, hyperthermia of tumors, and photodynamic therapy. In addition to medical laser applications, LIMS presents high-quality manuscripts on a wide range of dental topics, including aesthetic dentistry, endodontics, orthodontics, and prosthodontics. The journal publishes articles on the medical and dental applications of novel laser technologies, light delivery systems, sensors to monitor laser effects, basic laser-tissue interactions, and the modeling of laser-tissue interactions. Beyond laser applications, LIMS features articles relating to the use of non-laser light-tissue interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信