Discovery of bioactive peptides as therapeutic agents for skin wound repair.

IF 6.7 1区 工程技术 Q1 CELL & TISSUE ENGINEERING
Journal of Tissue Engineering Pub Date : 2024-09-29 eCollection Date: 2024-01-01 DOI:10.1177/20417314241280359
Nur Izzah Md Fadilah, Nurul Aqilah Shahabudin, Raniya Adiba Mohd Razif, Arka Sanyal, Anushikha Ghosh, Khairul Idzwan Baharin, Haslina Ahmad, Manira Maarof, Antonella Motta, Mh Busra Fauzi
{"title":"Discovery of bioactive peptides as therapeutic agents for skin wound repair.","authors":"Nur Izzah Md Fadilah, Nurul Aqilah Shahabudin, Raniya Adiba Mohd Razif, Arka Sanyal, Anushikha Ghosh, Khairul Idzwan Baharin, Haslina Ahmad, Manira Maarof, Antonella Motta, Mh Busra Fauzi","doi":"10.1177/20417314241280359","DOIUrl":null,"url":null,"abstract":"<p><p>Short sequences of amino acids called peptides have a wide range of biological functions and the potential to treat a number of diseases. Bioactive peptides can be derived from different sources, including marine organisms, and synthetic design, making them versatile candidates for production of therapeutic agents. Their therapeutic effects span across areas such as antimicrobial activity, cells proliferation and migration, synthesis of collagen, and more. This current review explores the fascinating realm of bioactive peptides as promising therapeutic agents for skin wound healing. This review focuses on the multifaceted biological effects of specific peptides, shedding light on their potential to revolutionize the field of dermatology and regenerative medicine. It delves into how these peptides stimulate collagen synthesis, inhibit inflammation, and accelerate tissue regeneration, ultimately contributing to the effective repair of skin wounds. The findings underscore the significant role several types of bioactive peptides can play in enhancing wound healing processes and offer promising insights for improving the quality of life for individuals with skin injuries and dermatological conditions. The versatility of peptides allows for the development of tailored treatments catering to specific wound types and patient needs. As continuing to delve deeper into the realm of bioactive peptides, there is immense potential for further exploration and innovation. Future endeavors may involve the optimization of peptide formulations, elucidation of underlying molecular and cellular mechanisms.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241280359"},"PeriodicalIF":6.7000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468004/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/20417314241280359","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Short sequences of amino acids called peptides have a wide range of biological functions and the potential to treat a number of diseases. Bioactive peptides can be derived from different sources, including marine organisms, and synthetic design, making them versatile candidates for production of therapeutic agents. Their therapeutic effects span across areas such as antimicrobial activity, cells proliferation and migration, synthesis of collagen, and more. This current review explores the fascinating realm of bioactive peptides as promising therapeutic agents for skin wound healing. This review focuses on the multifaceted biological effects of specific peptides, shedding light on their potential to revolutionize the field of dermatology and regenerative medicine. It delves into how these peptides stimulate collagen synthesis, inhibit inflammation, and accelerate tissue regeneration, ultimately contributing to the effective repair of skin wounds. The findings underscore the significant role several types of bioactive peptides can play in enhancing wound healing processes and offer promising insights for improving the quality of life for individuals with skin injuries and dermatological conditions. The versatility of peptides allows for the development of tailored treatments catering to specific wound types and patient needs. As continuing to delve deeper into the realm of bioactive peptides, there is immense potential for further exploration and innovation. Future endeavors may involve the optimization of peptide formulations, elucidation of underlying molecular and cellular mechanisms.

发现作为皮肤伤口修复治疗剂的生物活性肽。
被称为肽的氨基酸短序列具有广泛的生物功能和治疗多种疾病的潜力。生物活性肽可从不同来源(包括海洋生物和合成设计)获得,因此是生产治疗剂的多用途候选物质。生物活性肽的治疗效果横跨多个领域,如抗菌活性、细胞增殖和迁移、胶原蛋白的合成等。本综述探讨了生物活性肽作为皮肤伤口愈合治疗剂的迷人领域。本综述侧重于特定肽的多方面生物效应,揭示它们在皮肤病学和再生医学领域的革命性潜力。它深入探讨了这些肽如何刺激胶原蛋白合成、抑制炎症和加速组织再生,最终促进皮肤伤口的有效修复。研究结果强调了几种生物活性肽在促进伤口愈合过程中的重要作用,并为改善皮肤损伤和皮肤病患者的生活质量提供了前景广阔的见解。肽的多功能性使我们能够开发出适合特定伤口类型和患者需求的治疗方法。随着生物活性肽领域的不断深入,进一步探索和创新的潜力巨大。未来的工作可能包括优化肽配方、阐明潜在的分子和细胞机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Tissue Engineering
Journal of Tissue Engineering Engineering-Biomedical Engineering
CiteScore
11.60
自引率
4.90%
发文量
52
审稿时长
12 weeks
期刊介绍: The Journal of Tissue Engineering (JTE) is a peer-reviewed, open-access journal dedicated to scientific research in the field of tissue engineering and its clinical applications. Our journal encompasses a wide range of interests, from the fundamental aspects of stem cells and progenitor cells, including their expansion to viable numbers, to an in-depth understanding of their differentiation processes. Join us in exploring the latest advancements in tissue engineering and its clinical translation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信