Julia Rodríguez-Castelán , Evangelina Delgado-González , Mónica Sánchez-Tapia , Brenda Anguiano , Nimbe Torres , Carmen Aceves
{"title":"Preventive and therapeutic effects of molecular iodine in a model of diabetes mellitus induced by streptozotocin","authors":"Julia Rodríguez-Castelán , Evangelina Delgado-González , Mónica Sánchez-Tapia , Brenda Anguiano , Nimbe Torres , Carmen Aceves","doi":"10.1016/j.jnutbio.2024.109783","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetes mellitus (DM) is a multifactorial condition that involves oxidative alterations and dysbiosis of the gut microbiota associated with an imbalance in glucose metabolism. Therefore, the need to develop integrative therapies that are both effective and have fewer side effects has become evident in recent years. Molecular iodine (I<sub>2</sub>) has antioxidant effects in preclinical hyperglycemic models. The present work analyzes the preventive and therapeutic effects of oral I<sub>2</sub> supplementation in a DM model induced by low doses of streptozotocin (STZ). Male CD1 mice (12 weeks old) were divided into the following groups: control, STZ (20 mg/kg/day, i.p., for 5 days), I<sub>2</sub> (0.2 mg/Kg in drinking water), preventive (STZ + I<sub>2</sub>), and therapeutic (I<sub>2</sub> supplementation from day 35 to day 90; STZ + I<sub>2(Ther)</sub>). The supplementation with I<sub>2</sub> prevented and normalized hyperglycemia, hypercholesterolemia, and hypertriglyceridemia associated with STZ, preserving pancreatic, liver, muscle, and adipose tissue morphology and normalizing inflammatory gene induction (TLR2, TLR4, NFkβ, TNFα) in several tissues. Furthermore, compared to the STZ group, the presence of I<sub>2</sub> favored a more significant abundance of beneficial bacteria that support the integrity of the intestinal epithelial barrier and higher α-diversity. In conclusion, the I<sub>2</sub> supplement has preventive and therapeutic effects, reducing oxidative damage and reestablishing microbiota diversity following STZ exposure.</div></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"135 ","pages":"Article 109783"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286324002146","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes mellitus (DM) is a multifactorial condition that involves oxidative alterations and dysbiosis of the gut microbiota associated with an imbalance in glucose metabolism. Therefore, the need to develop integrative therapies that are both effective and have fewer side effects has become evident in recent years. Molecular iodine (I2) has antioxidant effects in preclinical hyperglycemic models. The present work analyzes the preventive and therapeutic effects of oral I2 supplementation in a DM model induced by low doses of streptozotocin (STZ). Male CD1 mice (12 weeks old) were divided into the following groups: control, STZ (20 mg/kg/day, i.p., for 5 days), I2 (0.2 mg/Kg in drinking water), preventive (STZ + I2), and therapeutic (I2 supplementation from day 35 to day 90; STZ + I2(Ther)). The supplementation with I2 prevented and normalized hyperglycemia, hypercholesterolemia, and hypertriglyceridemia associated with STZ, preserving pancreatic, liver, muscle, and adipose tissue morphology and normalizing inflammatory gene induction (TLR2, TLR4, NFkβ, TNFα) in several tissues. Furthermore, compared to the STZ group, the presence of I2 favored a more significant abundance of beneficial bacteria that support the integrity of the intestinal epithelial barrier and higher α-diversity. In conclusion, the I2 supplement has preventive and therapeutic effects, reducing oxidative damage and reestablishing microbiota diversity following STZ exposure.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.