Lactobacillus rhamnosus GG-derived extracellular vesicles promote wound healing via miR-21-5p-mediated re-epithelization and angiogenesis.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Juan Wang, Xiaojie Li, Xinyue Zhao, Siqi Yuan, Hanyu Dou, Ting Cheng, Taomin Huang, Zhi Lv, Yidong Tu, Yejiao Shi, Xiaolei Ding
{"title":"Lactobacillus rhamnosus GG-derived extracellular vesicles promote wound healing via miR-21-5p-mediated re-epithelization and angiogenesis.","authors":"Juan Wang, Xiaojie Li, Xinyue Zhao, Siqi Yuan, Hanyu Dou, Ting Cheng, Taomin Huang, Zhi Lv, Yidong Tu, Yejiao Shi, Xiaolei Ding","doi":"10.1186/s12951-024-02893-8","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs), especially those derived from stem cells, have emerged as a novel treatment for promoting wound healing in regenerative medicine. However, the clinical application of mammalian cells-derived EVs is hindered by their high cost and low yields. Inspired by the ability of EVs to mediate interkingdom communication, we explored the therapeutic potential of EVs released by the probiotic strain Lactobacillus rhamnosus GG (LGG) in skin wound healing and elucidated the underlying mechanism involved. Using full-thickness skin wound-healing mouse models, we found that LGG-EVs accelerated wound healing procedures, including increased re-epithelialization and promoted angiogenesis. Using in vitro experiments, we further demonstrated that LGG-EVs boosted the proliferation and migration capacities of both epithelial and endothelial cells, as well as promoted endothelial tube formation. miRNA profiling analysis revealed that miR-21-5p was highly enriched in LGG-EVs and LGG-EV treatment significantly increased miR-21-5p level in recipient cells. Mechanically, LGG-EVs induced regulatory effects via miR-21-5p mediated metabolic signaling rewiring. Our results suggest that EVs derived from LGG could serve as a promising candidate for accelerating wound healing and possibly for treating chronic and impaired healing conditions.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"644"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490139/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02893-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular vesicles (EVs), especially those derived from stem cells, have emerged as a novel treatment for promoting wound healing in regenerative medicine. However, the clinical application of mammalian cells-derived EVs is hindered by their high cost and low yields. Inspired by the ability of EVs to mediate interkingdom communication, we explored the therapeutic potential of EVs released by the probiotic strain Lactobacillus rhamnosus GG (LGG) in skin wound healing and elucidated the underlying mechanism involved. Using full-thickness skin wound-healing mouse models, we found that LGG-EVs accelerated wound healing procedures, including increased re-epithelialization and promoted angiogenesis. Using in vitro experiments, we further demonstrated that LGG-EVs boosted the proliferation and migration capacities of both epithelial and endothelial cells, as well as promoted endothelial tube formation. miRNA profiling analysis revealed that miR-21-5p was highly enriched in LGG-EVs and LGG-EV treatment significantly increased miR-21-5p level in recipient cells. Mechanically, LGG-EVs induced regulatory effects via miR-21-5p mediated metabolic signaling rewiring. Our results suggest that EVs derived from LGG could serve as a promising candidate for accelerating wound healing and possibly for treating chronic and impaired healing conditions.

鼠李糖乳杆菌 GG 衍生的细胞外囊泡通过 miR-21-5p 介导的再上皮化和血管生成促进伤口愈合。
细胞外囊泡(EVs),尤其是源自干细胞的EVs,已成为再生医学中促进伤口愈合的一种新疗法。然而,源自哺乳动物细胞的EVs成本高、产量低,阻碍了其临床应用。受EVs介导王国间交流能力的启发,我们探索了益生菌株鼠李糖乳杆菌(LGG)释放的EVs在皮肤伤口愈合中的治疗潜力,并阐明了其中的潜在机制。通过使用全厚皮肤伤口愈合小鼠模型,我们发现 LGG-EVs 加速了伤口愈合过程,包括增加再上皮化和促进血管生成。通过体外实验,我们进一步证实了 LGG-EVs 可提高上皮细胞和内皮细胞的增殖和迁移能力,并促进内皮管的形成。miRNA 图谱分析表明,miR-21-5p 在 LGG-EVs 中高度富集,LGG-EV 处理可显著提高受体细胞中的 miR-21-5p 水平。从机理上讲,LGG-EV 通过 miR-21-5p 介导的代谢信号重构诱导了调控效应。我们的研究结果表明,从 LGG 提取的 EVs 有可能成为加速伤口愈合的候选物质,也有可能用于治疗慢性和受损的愈合状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信