Unveiling Fluorescence Spectroscopy, Molecular Docking and Dynamic Simulations: Interactions Between Protein and 2, 4-Dinitrophenylhydrazine Schiff Base.
Tapan K Rana, Patitapaban Mohanty, Pragyan P Dash, Swagatika Mishra, Sorav Sagar Tripathi, Priyaranjan Mohapatra, Aruna Kumar Barick, Pradip K Jena, R Bhaskaran, Mohd S Khan, Mohammad R Khan, Lingaraj Behera, Bigyan Ranjan Jali
{"title":"Unveiling Fluorescence Spectroscopy, Molecular Docking and Dynamic Simulations: Interactions Between Protein and 2, 4-Dinitrophenylhydrazine Schiff Base.","authors":"Tapan K Rana, Patitapaban Mohanty, Pragyan P Dash, Swagatika Mishra, Sorav Sagar Tripathi, Priyaranjan Mohapatra, Aruna Kumar Barick, Pradip K Jena, R Bhaskaran, Mohd S Khan, Mohammad R Khan, Lingaraj Behera, Bigyan Ranjan Jali","doi":"10.1007/s10895-024-03939-8","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we aimed to explore the interaction mechanism between bovine serum albumin (BSA) and a Schiff base compound derived from 2,4-dinotrophenyl hydrazine (L) using various spectroscopic techniques. The interaction between BSA and synthesizing molecule can provide insights into binding affinity, conformational changes and potential applications in drug delivery or biochemistry. The interaction between BSA and L was studied by using UV-Vis and fluorescence titration analysis. The fluorescence quenching emission was observed at 343 nm, upon addition of L to the buffer solution of BSA. The binding between BSA and ligand is static in nature using fluorescence quenching emission. The thermodynamic parameters were calculated from the temperature-dependent binding constants (i.e., ∆H = -0.318 kcal/mol, ∆G = -7.857 kcal/mol and ∆S = 0.023 kcal/mol), which indicated that the protein-ligand complex formation between L and BSA is mainly due to the electrostatic interactions. The experimental and theoretical results showed excellent agreement with respect to the mechanism of binding and binding constants. The molecular docking and molecular dynamic analysis experiments were performed to establish the interaction between protein and ligand.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03939-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we aimed to explore the interaction mechanism between bovine serum albumin (BSA) and a Schiff base compound derived from 2,4-dinotrophenyl hydrazine (L) using various spectroscopic techniques. The interaction between BSA and synthesizing molecule can provide insights into binding affinity, conformational changes and potential applications in drug delivery or biochemistry. The interaction between BSA and L was studied by using UV-Vis and fluorescence titration analysis. The fluorescence quenching emission was observed at 343 nm, upon addition of L to the buffer solution of BSA. The binding between BSA and ligand is static in nature using fluorescence quenching emission. The thermodynamic parameters were calculated from the temperature-dependent binding constants (i.e., ∆H = -0.318 kcal/mol, ∆G = -7.857 kcal/mol and ∆S = 0.023 kcal/mol), which indicated that the protein-ligand complex formation between L and BSA is mainly due to the electrostatic interactions. The experimental and theoretical results showed excellent agreement with respect to the mechanism of binding and binding constants. The molecular docking and molecular dynamic analysis experiments were performed to establish the interaction between protein and ligand.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.