{"title":"Study of Luminescence Phenomena of Tb (III) Containing Fluroquinoline for Application in Optoelectronic Devices.","authors":"Poonam Kumari, Vaishnavi Lather, Arjun Malik, Pratibha Ahlawat, Rajesh Kumar","doi":"10.1007/s10895-024-03989-y","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a series of six vivid green Tb(III) complexes, denoted by the general formula [Tb(L)<sub>3</sub>.secondary sensitizers], where L represents 1-cyclopropyl-7-(4-ethylpiperazin-1-yl)-6-fluoro-4-oxoquinoline-3-carboxylic acid and secondary sensitizers consist of heterocyclic N-donor aromatic systems. The synthesis of these complexes were achieved through a solvent-assisted grinding method, and their characterization involved various techniques such as CHN analysis, FTIR, NMR, UV, XRD, and NIR spectroscopy. These analyses confirmed the successful synthesis of complexes with coordination between the quinoline moiety and the metal ion. Photoluminescence studies were conducted in solid and solution phases, revealing excellent luminescence properties. The bright green color emitted by the complexes upon exposure to UV rays was attributed to the hypersensitive <sup>5</sup>D<sub>4</sub> → <sup>7</sup>F<sub>5</sub> transition. J-O analysis indicated an asymmetrical coordination environment around in the complexes. Additionally, various radiative properties (A<sub>red</sub>, A<sub>nred</sub>, η, β<sub>exp</sub>, σ<sub>s</sub>) and band gap values were determined, highlighting the potential applications of these complexes in diverse optoelectronic fields. Chromaticity evaluation demonstrated high color purity in both solid and solution phases. Furthermore, the CCT value identified the solid complexes as a cool light source. Overall, the analyses supported the exceptional luminosity of synthesized complexes, positioning them as promising luminescent materials for a wide range of devices.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03989-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a series of six vivid green Tb(III) complexes, denoted by the general formula [Tb(L)3.secondary sensitizers], where L represents 1-cyclopropyl-7-(4-ethylpiperazin-1-yl)-6-fluoro-4-oxoquinoline-3-carboxylic acid and secondary sensitizers consist of heterocyclic N-donor aromatic systems. The synthesis of these complexes were achieved through a solvent-assisted grinding method, and their characterization involved various techniques such as CHN analysis, FTIR, NMR, UV, XRD, and NIR spectroscopy. These analyses confirmed the successful synthesis of complexes with coordination between the quinoline moiety and the metal ion. Photoluminescence studies were conducted in solid and solution phases, revealing excellent luminescence properties. The bright green color emitted by the complexes upon exposure to UV rays was attributed to the hypersensitive 5D4 → 7F5 transition. J-O analysis indicated an asymmetrical coordination environment around in the complexes. Additionally, various radiative properties (Ared, Anred, η, βexp, σs) and band gap values were determined, highlighting the potential applications of these complexes in diverse optoelectronic fields. Chromaticity evaluation demonstrated high color purity in both solid and solution phases. Furthermore, the CCT value identified the solid complexes as a cool light source. Overall, the analyses supported the exceptional luminosity of synthesized complexes, positioning them as promising luminescent materials for a wide range of devices.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.