Fast Determination of Propofol in Human Plasma Using C18-Functionalized Magnetic Nanomaterials Followed by Supercritical Fluid Chromatography.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shan-Yan Liang, Xiao-Min Xu, Peng Wang, Ming-Li Ye, Shui-Feng Zhang, Yong-Gang Zhao
{"title":"Fast Determination of Propofol in Human Plasma Using C18-Functionalized Magnetic Nanomaterials Followed by Supercritical Fluid Chromatography.","authors":"Shan-Yan Liang, Xiao-Min Xu, Peng Wang, Ming-Li Ye, Shui-Feng Zhang, Yong-Gang Zhao","doi":"10.1093/chromsci/bmae053","DOIUrl":null,"url":null,"abstract":"<p><p>Novel C18-functionalized magnetic nanomaterials; i.e., C18@poly-styrene-divinylbenzene-glycidyl methacrylate-Fe3O4 (C18@PS-DVB-GMA-Fe3O4) have been synthesized by using N, N-dimethyloctadecylamine as modifying agent, which could be beneficial to remove the blood phospholipids. The C18@PS-DVB-GMA-Fe3O4 nanoparticles have been used and evaluated in the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) procedure for human plasma prior to the analysis of propofol by supercritical fluid chromatography (SFC). In the QuEChERS procedure, human plasma samples are directly mixed with extraction solvent and C18@PS-DVB-GMA-Fe3O4 nanoparticles, and the extraction and cleanup procedures have been accomplished simultaneously. The SFC separation was performed with a C18 column (Thermo Scientific™ Acclaim™ 120, 250 × 4. 6 mm, 5 μm) within 5 min, using thymol as the internal standard. Supercritical carbon dioxide was used as the mobile phase with methanol as the cosolvent at the flow rate of 1.0 mL/min. The column temperature was 38°C, and detection wavelength was 275 nm. A good linearity was obtained among the propofol concentration range of 0.5-10 mg/L (R2 = 0.9997) with the limit of detection of 0.17 mg/L. Recoveries were in the range of 76.5-91.9%, with RSD less than 7.9%. These results suggested that method is convenient, rapid with high accuracy and little matrix effect, and suitable for rapid determination of propofol plasma concentration.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chromsci/bmae053","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Novel C18-functionalized magnetic nanomaterials; i.e., C18@poly-styrene-divinylbenzene-glycidyl methacrylate-Fe3O4 (C18@PS-DVB-GMA-Fe3O4) have been synthesized by using N, N-dimethyloctadecylamine as modifying agent, which could be beneficial to remove the blood phospholipids. The C18@PS-DVB-GMA-Fe3O4 nanoparticles have been used and evaluated in the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) procedure for human plasma prior to the analysis of propofol by supercritical fluid chromatography (SFC). In the QuEChERS procedure, human plasma samples are directly mixed with extraction solvent and C18@PS-DVB-GMA-Fe3O4 nanoparticles, and the extraction and cleanup procedures have been accomplished simultaneously. The SFC separation was performed with a C18 column (Thermo Scientific™ Acclaim™ 120, 250 × 4. 6 mm, 5 μm) within 5 min, using thymol as the internal standard. Supercritical carbon dioxide was used as the mobile phase with methanol as the cosolvent at the flow rate of 1.0 mL/min. The column temperature was 38°C, and detection wavelength was 275 nm. A good linearity was obtained among the propofol concentration range of 0.5-10 mg/L (R2 = 0.9997) with the limit of detection of 0.17 mg/L. Recoveries were in the range of 76.5-91.9%, with RSD less than 7.9%. These results suggested that method is convenient, rapid with high accuracy and little matrix effect, and suitable for rapid determination of propofol plasma concentration.

利用 C18 功能化磁性纳米材料和超临界流体色谱法快速测定人血浆中的丙泊酚。
以 N, N-二甲基十八胺为改性剂,合成了新型 C18 功能化磁性纳米材料,即 C18@poly-styrene-divinylbenzene-glycidyl methacrylate-Fe3O4 (C18@PS-DVB-GMA-Fe3O4),该材料有利于去除血液中的磷脂。在超临界流体色谱(SFC)分析异丙酚之前,C18@PS-DVB-GMA-Fe3O4 纳米粒子被用于快速、简便、廉价、有效、坚固和安全(QuEChERS)人血浆分析程序中并进行了评估。在 QuEChERS 程序中,人血浆样品与萃取溶剂和 C18@PS-DVB-GMA-Fe3O4 纳米粒子直接混合,萃取和净化程序同时完成。采用 C18 色谱柱(Thermo Scientific™ Acclaim™ 120, 250 × 4. 6 mm, 5 μm),以百里酚为内标,在 5 分钟内完成 SFC 分离。以超临界二氧化碳为流动相,甲醇为助溶剂,流速为 1.0 mL/min。色谱柱温度为 38°C,检测波长为 275 nm。丙泊酚在 0.5-10 mg/L 浓度范围内线性关系良好(R2=0.9997),检出限为 0.17 mg/L。回收率为76.5%-91.9%,RSD小于7.9%。该方法简便、快速、准确度高、基质效应小,适用于丙泊酚血浆浓度的快速测定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信