{"title":"Fast Determination of Propofol in Human Plasma Using C18-Functionalized Magnetic Nanomaterials Followed by Supercritical Fluid Chromatography.","authors":"Shan-Yan Liang, Xiao-Min Xu, Peng Wang, Ming-Li Ye, Shui-Feng Zhang, Yong-Gang Zhao","doi":"10.1093/chromsci/bmae053","DOIUrl":null,"url":null,"abstract":"<p><p>Novel C18-functionalized magnetic nanomaterials; i.e., C18@poly-styrene-divinylbenzene-glycidyl methacrylate-Fe3O4 (C18@PS-DVB-GMA-Fe3O4) have been synthesized by using N, N-dimethyloctadecylamine as modifying agent, which could be beneficial to remove the blood phospholipids. The C18@PS-DVB-GMA-Fe3O4 nanoparticles have been used and evaluated in the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) procedure for human plasma prior to the analysis of propofol by supercritical fluid chromatography (SFC). In the QuEChERS procedure, human plasma samples are directly mixed with extraction solvent and C18@PS-DVB-GMA-Fe3O4 nanoparticles, and the extraction and cleanup procedures have been accomplished simultaneously. The SFC separation was performed with a C18 column (Thermo Scientific™ Acclaim™ 120, 250 × 4. 6 mm, 5 μm) within 5 min, using thymol as the internal standard. Supercritical carbon dioxide was used as the mobile phase with methanol as the cosolvent at the flow rate of 1.0 mL/min. The column temperature was 38°C, and detection wavelength was 275 nm. A good linearity was obtained among the propofol concentration range of 0.5-10 mg/L (R2 = 0.9997) with the limit of detection of 0.17 mg/L. Recoveries were in the range of 76.5-91.9%, with RSD less than 7.9%. These results suggested that method is convenient, rapid with high accuracy and little matrix effect, and suitable for rapid determination of propofol plasma concentration.</p>","PeriodicalId":15430,"journal":{"name":"Journal of chromatographic science","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chromatographic science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chromsci/bmae053","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Novel C18-functionalized magnetic nanomaterials; i.e., C18@poly-styrene-divinylbenzene-glycidyl methacrylate-Fe3O4 (C18@PS-DVB-GMA-Fe3O4) have been synthesized by using N, N-dimethyloctadecylamine as modifying agent, which could be beneficial to remove the blood phospholipids. The C18@PS-DVB-GMA-Fe3O4 nanoparticles have been used and evaluated in the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) procedure for human plasma prior to the analysis of propofol by supercritical fluid chromatography (SFC). In the QuEChERS procedure, human plasma samples are directly mixed with extraction solvent and C18@PS-DVB-GMA-Fe3O4 nanoparticles, and the extraction and cleanup procedures have been accomplished simultaneously. The SFC separation was performed with a C18 column (Thermo Scientific™ Acclaim™ 120, 250 × 4. 6 mm, 5 μm) within 5 min, using thymol as the internal standard. Supercritical carbon dioxide was used as the mobile phase with methanol as the cosolvent at the flow rate of 1.0 mL/min. The column temperature was 38°C, and detection wavelength was 275 nm. A good linearity was obtained among the propofol concentration range of 0.5-10 mg/L (R2 = 0.9997) with the limit of detection of 0.17 mg/L. Recoveries were in the range of 76.5-91.9%, with RSD less than 7.9%. These results suggested that method is convenient, rapid with high accuracy and little matrix effect, and suitable for rapid determination of propofol plasma concentration.
期刊介绍:
The Journal of Chromatographic Science is devoted to the dissemination of information concerning all methods of chromatographic analysis. The standard manuscript is a description of recent original research that covers any or all phases of a specific separation problem, principle, or method. Manuscripts which have a high degree of novelty and fundamental significance to the field of separation science are particularly encouraged. It is expected the authors will clearly state in the Introduction how their method compares in some markedly new and improved way to previous published related methods. Analytical performance characteristics of new methods including sensitivity, tested limits of detection or quantification, accuracy, precision, and specificity should be provided. Manuscripts which describe a straightforward extension of a known analytical method or an application to a previously analyzed and/or uncomplicated sample matrix will not normally be reviewed favorably. Manuscripts in which mass spectrometry is the dominant analytical method and chromatography is of marked secondary importance may be declined.