A circuit-generated quantum subspace algorithm for the variational quantum eigensolver.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Mark R Hirsbrunner, J Wayne Mullinax, Yizhi Shen, David B Williams-Young, Katherine Klymko, Roel Van Beeumen, Norm M Tubman
{"title":"A circuit-generated quantum subspace algorithm for the variational quantum eigensolver.","authors":"Mark R Hirsbrunner, J Wayne Mullinax, Yizhi Shen, David B Williams-Young, Katherine Klymko, Roel Van Beeumen, Norm M Tubman","doi":"10.1063/5.0224883","DOIUrl":null,"url":null,"abstract":"<p><p>Recent research has shown that wavefunction evolution in real and imaginary time can generate quantum subspaces with significant utility for obtaining accurate ground state energies. Inspired by these methods, we propose combining quantum subspace techniques with the variational quantum eigensolver (VQE). In our approach, the parameterized quantum circuit is divided into a series of smaller subcircuits. The sequential application of these subcircuits to an initial state generates a set of wavefunctions that we use as a quantum subspace to obtain high-accuracy groundstate energies. We call this technique the circuit subspace variational quantum eigensolver (CSVQE) algorithm. By benchmarking CSVQE on a range of quantum chemistry problems, we show that it can achieve significant error reduction in the best case compared to conventional VQE, particularly for poorly optimized circuits, greatly improving convergence rates. Furthermore, we demonstrate that when applied to circuits trapped at local minima, CSVQE can produce energies close to the global minimum of the energy landscape, making it a potentially powerful tool for diagnosing local minima.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0224883","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent research has shown that wavefunction evolution in real and imaginary time can generate quantum subspaces with significant utility for obtaining accurate ground state energies. Inspired by these methods, we propose combining quantum subspace techniques with the variational quantum eigensolver (VQE). In our approach, the parameterized quantum circuit is divided into a series of smaller subcircuits. The sequential application of these subcircuits to an initial state generates a set of wavefunctions that we use as a quantum subspace to obtain high-accuracy groundstate energies. We call this technique the circuit subspace variational quantum eigensolver (CSVQE) algorithm. By benchmarking CSVQE on a range of quantum chemistry problems, we show that it can achieve significant error reduction in the best case compared to conventional VQE, particularly for poorly optimized circuits, greatly improving convergence rates. Furthermore, we demonstrate that when applied to circuits trapped at local minima, CSVQE can produce energies close to the global minimum of the energy landscape, making it a potentially powerful tool for diagnosing local minima.

变分量子求解器的电路生成量子子空间算法。
最近的研究表明,实时间和虚时间的波函数演化可以产生量子子空间,对获得精确的基态能量具有重要作用。受这些方法的启发,我们提议将量子子空间技术与变分量子求解器(VQE)相结合。在我们的方法中,参数化量子电路被划分为一系列较小的子电路。将这些子电路依次应用于初始状态,会产生一组波函数,我们将其用作量子子空间,从而获得高精度的基态能量。我们称这种技术为电路子空间变分量子求解器(CSVQE)算法。通过在一系列量子化学问题上对 CSVQE 进行基准测试,我们发现与传统的 VQE 相比,CSVQE 在最佳情况下可以显著减少误差,尤其是对于优化较差的电路,从而大大提高了收敛速度。此外,我们还证明,当 CSVQE 应用于陷入局部极小值的电路时,它能产生接近能量景观全局极小值的能量,使其成为诊断局部极小值的潜在强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信