Differentially heterogeneous hydration environment of the familial mutants of α-synuclein.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Leena Aggarwal, Sayan Karmakar, Parbati Biswas
{"title":"Differentially heterogeneous hydration environment of the familial mutants of α-synuclein.","authors":"Leena Aggarwal, Sayan Karmakar, Parbati Biswas","doi":"10.1063/5.0230853","DOIUrl":null,"url":null,"abstract":"<p><p>The behavior of hydration water around familial Parkinson's disease linked mutants of α-synuclein may be linked to the early-onset of Parkinson's disease. For the first time, this study compares the local structure and dynamics of hydration water around different segments of some of the natural mutants of α-synuclein, i.e., E46K, G51D, A30P, and A53E, with that of the wild-type protein through explicit water MD simulations. The results show that the C-terminal segments of the fast aggregating mutants such as E46K and A30P are less exposed to water, while those of the slow aggregating ones such as A53E and G51D are more exposed to water relative to that of the wild-type protein. In addition, the water molecules are found to be more ordered around the C-terminal segment of the A53E and G51D mutants as compared to the wild-type protein. This is due to an increase in the overall charge of α-syn upon A53E and G51D mutations. The translational and rotational motions of water molecules in the hydration shell of the C-terminal segment of A53E and G51D mutants are found to be faster relative to that of the wild-type protein. This study validates the differential hydration environment around the C-terminal segment for the causative and protective mutants of α-synuclein.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0230853","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The behavior of hydration water around familial Parkinson's disease linked mutants of α-synuclein may be linked to the early-onset of Parkinson's disease. For the first time, this study compares the local structure and dynamics of hydration water around different segments of some of the natural mutants of α-synuclein, i.e., E46K, G51D, A30P, and A53E, with that of the wild-type protein through explicit water MD simulations. The results show that the C-terminal segments of the fast aggregating mutants such as E46K and A30P are less exposed to water, while those of the slow aggregating ones such as A53E and G51D are more exposed to water relative to that of the wild-type protein. In addition, the water molecules are found to be more ordered around the C-terminal segment of the A53E and G51D mutants as compared to the wild-type protein. This is due to an increase in the overall charge of α-syn upon A53E and G51D mutations. The translational and rotational motions of water molecules in the hydration shell of the C-terminal segment of A53E and G51D mutants are found to be faster relative to that of the wild-type protein. This study validates the differential hydration environment around the C-terminal segment for the causative and protective mutants of α-synuclein.

α-突触核蛋白家族突变体的异质性水合环境。
帕金森病家族性突变体α-突触核蛋白周围水合水的行为可能与帕金森病的早发有关。本研究首次通过显式水MD模拟,比较了α-突触核蛋白一些天然突变体(即E46K、G51D、A30P和A53E)不同片段周围水合水的局部结构和动力学特性,以及野生型蛋白的局部结构和动力学特性。结果表明,与野生型蛋白相比,E46K 和 A30P 等快速聚集突变体的 C 端暴露于水的程度较低,而 A53E 和 G51D 等慢速聚集突变体的 C 端暴露于水的程度较高。此外,与野生型蛋白质相比,A53E 和 G51D 突变体 C 端周围的水分子更有序。这是由于 A53E 和 G51D 突变后,α-syn 的总电荷增加了。与野生型蛋白质相比,A53E 和 G51D 突变体 C 端水合外壳中水分子的平移和旋转运动更快。这项研究验证了α-突触核蛋白致病突变体和保护性突变体C末段周围不同的水合环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信