{"title":"Open and closed structures of L-arginine oxidase by cryo-electron microscopy and X-ray crystallography.","authors":"Hiroki Yamaguchi, Kazutoshi Takahashi, Nobutaka Numoto, Hiroshi Suzuki, Moemi Tatsumi, Akiko Kamegawa, Kouki Nishikawa, Yasuhisa Asano, Toshimi Mizukoshi, Hiroshi Miyano, Yoshinori Fujiyoshi, Masayuki Sugiki","doi":"10.1093/jb/mvae070","DOIUrl":null,"url":null,"abstract":"<p><p>L-arginine oxidase (AROD, EC 1.4.3.25) is an oxidoreductase that catalyzes the deamination of L-arginine, with flavin adenine dinucleotide (FAD) as a cofactor. Recently identified AROD from Pseudomonas sp. TPU 7192 (PT-AROD) demonstrates high selectivity for L-arginine. This enzyme is useful for accurate assays of L-arginine in biological samples. The structural characteristics of the FAD-dependent AROD, however, remain unknown. Here, we report the structure of PT-AROD at a resolution of 2.3 Å by cryo-electron microscopy. PT-AROD adopts an octameric structure with D4 symmetry, which is consistent with its molecular weight in solution, estimated by mass photometry. Comparative analysis of this structure with that determined using X-ray crystallography reveals open and closed forms of the lid-like loop at the entrance to the substrate pocket. Furthermore, mutation of Glu493, located at the substrate binding site, diminishes substrate selectivity, suggesting that this residue contributes significantly to the high selectivity of PT-AROD.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvae070","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
L-arginine oxidase (AROD, EC 1.4.3.25) is an oxidoreductase that catalyzes the deamination of L-arginine, with flavin adenine dinucleotide (FAD) as a cofactor. Recently identified AROD from Pseudomonas sp. TPU 7192 (PT-AROD) demonstrates high selectivity for L-arginine. This enzyme is useful for accurate assays of L-arginine in biological samples. The structural characteristics of the FAD-dependent AROD, however, remain unknown. Here, we report the structure of PT-AROD at a resolution of 2.3 Å by cryo-electron microscopy. PT-AROD adopts an octameric structure with D4 symmetry, which is consistent with its molecular weight in solution, estimated by mass photometry. Comparative analysis of this structure with that determined using X-ray crystallography reveals open and closed forms of the lid-like loop at the entrance to the substrate pocket. Furthermore, mutation of Glu493, located at the substrate binding site, diminishes substrate selectivity, suggesting that this residue contributes significantly to the high selectivity of PT-AROD.
期刊介绍:
The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.