{"title":"HDAC7 promotes ovarian cancer malignancy via AKT/mTOR signalling pathway","authors":"Qi Feng, Sheng Hao, Xiongxiu Liu, Zhong Yan, Kai Sheng, Yanping Li, Peng Zhang, Xiugui Sheng","doi":"10.1111/jcmm.70120","DOIUrl":null,"url":null,"abstract":"<p>Ovarian cancer is of the most lethal malignancy and causes serious threat to women health worldwide. A deep understanding of molecular mechanisms underlying ovarian cancer progression is critical for the development of promising therapeutic strategies. In this study, we aimed to employ immunohistochemistry to determine the protein level of HDAC7 in patient tissues, our data showed HDAC7 levels are upregulated in tumour tissues. In addition, we also performed Kaplan–Meier survival analysis to investigate the association between HDAC7 expression and clinical prognosis, and found that HDAC7 expression was associated with poor prognosis in ovarian cancer patients. Inhibition of HDAC7 cells resulted in lower cell proliferation, invasion and colony formation. Furthermore, we also found that HDAC7 inhibition suppressed PI3K/AKT/mTOR pathway. In contrast, exogenous HDAC7 expression activated the PI3K/AKT/mTOR pathway in HDAC7 knockout cells and rescued the cell proliferation, invasion and colony formation. However, inhibition of p-AKT induced lower cell proliferation, metastasis and colony formation abilities. In murine model, HDAC7 KO significantly decreased the tumour burden. These data indicate that HDAC7 is involved in regulation of PI3K/AKT/mTOR pathway and targeting of HDAC7 could be potential therapeutic strategy in the treatment of ovarian cancer.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491867/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian cancer is of the most lethal malignancy and causes serious threat to women health worldwide. A deep understanding of molecular mechanisms underlying ovarian cancer progression is critical for the development of promising therapeutic strategies. In this study, we aimed to employ immunohistochemistry to determine the protein level of HDAC7 in patient tissues, our data showed HDAC7 levels are upregulated in tumour tissues. In addition, we also performed Kaplan–Meier survival analysis to investigate the association between HDAC7 expression and clinical prognosis, and found that HDAC7 expression was associated with poor prognosis in ovarian cancer patients. Inhibition of HDAC7 cells resulted in lower cell proliferation, invasion and colony formation. Furthermore, we also found that HDAC7 inhibition suppressed PI3K/AKT/mTOR pathway. In contrast, exogenous HDAC7 expression activated the PI3K/AKT/mTOR pathway in HDAC7 knockout cells and rescued the cell proliferation, invasion and colony formation. However, inhibition of p-AKT induced lower cell proliferation, metastasis and colony formation abilities. In murine model, HDAC7 KO significantly decreased the tumour burden. These data indicate that HDAC7 is involved in regulation of PI3K/AKT/mTOR pathway and targeting of HDAC7 could be potential therapeutic strategy in the treatment of ovarian cancer.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.