Ana Ferri-Caruana , Elena Cardera-Porta , Javier Gene-Morales , Angel Saez-Berlanga , Pablo Jiménez-Martínez , Alvaro Juesas , Juan C. Colado
{"title":"Barefoot vs shod walking and jogging on the electromyographic activity of the medial and lateral gastrocnemius","authors":"Ana Ferri-Caruana , Elena Cardera-Porta , Javier Gene-Morales , Angel Saez-Berlanga , Pablo Jiménez-Martínez , Alvaro Juesas , Juan C. Colado","doi":"10.1016/j.jbiomech.2024.112371","DOIUrl":null,"url":null,"abstract":"<div><div>Gastrocnemius weakness is associated with Achilles tendinopathies and muscle strains, with the medial gastrocnemius (MG) more commonly injured than the lateral gastrocnemius (LG). Walking and jogging are common in daily activities and sports, and biomechanical differences between shod and barefoot exercise may influence MG and LG activation. Understanding these activation patterns could help optimize training programs for injury prevention and/or rehabilitation. The aim was to compare MG and LG electromyographic activity during walking and jogging, both shod and barefoot. Twenty-nine participants (25.28 ± 4.53 years, 171.31 ± 0.76 cm, 72.68 ± 6.36 kg) completed a warm-up followed by 1 min of walking (80–99 steps/min) and jogging (130–150 steps/min) in both conditions (barefoot and shod, random order). Electromyographic signals were recorded using wearable devices (mDurance Solutions S.L., Granada, Spain; 1024 Hz sampling rate). We measured the root-mean-square (RMS) amplitudes for an entire stride cycle and digitally filtered the signals. For analysis, we normalized electromyographic values to the average peak values obtained during two sprints. We analyzed differences with a repeated-measures analysis of variance. Significant effects of condition (barefoot-shod) and gastrocnemius (MG-LG) were observed (all p ≤ 0.023, ƞp<sup>2</sup> = 0.17–0.39), with higher MG activation compared to LG in the barefoot conditions (p = 0.004–0.027, d = 0.72–0.83), and nonsignificant differences between muscles in the shod conditions (p > 0.05). Shod exercise compared to barefoot resulted in lower MG activation (p = 0.001–0.003, d = 0.62–0.63) and non-significant differences in LG activation. These results indicate that barefoot walking and jogging increase MG activation compared to shod conditions, with no differences in LG activation. Additionally, footwear reduces differences between MG and LG.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"176 ","pages":"Article 112371"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024004494","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gastrocnemius weakness is associated with Achilles tendinopathies and muscle strains, with the medial gastrocnemius (MG) more commonly injured than the lateral gastrocnemius (LG). Walking and jogging are common in daily activities and sports, and biomechanical differences between shod and barefoot exercise may influence MG and LG activation. Understanding these activation patterns could help optimize training programs for injury prevention and/or rehabilitation. The aim was to compare MG and LG electromyographic activity during walking and jogging, both shod and barefoot. Twenty-nine participants (25.28 ± 4.53 years, 171.31 ± 0.76 cm, 72.68 ± 6.36 kg) completed a warm-up followed by 1 min of walking (80–99 steps/min) and jogging (130–150 steps/min) in both conditions (barefoot and shod, random order). Electromyographic signals were recorded using wearable devices (mDurance Solutions S.L., Granada, Spain; 1024 Hz sampling rate). We measured the root-mean-square (RMS) amplitudes for an entire stride cycle and digitally filtered the signals. For analysis, we normalized electromyographic values to the average peak values obtained during two sprints. We analyzed differences with a repeated-measures analysis of variance. Significant effects of condition (barefoot-shod) and gastrocnemius (MG-LG) were observed (all p ≤ 0.023, ƞp2 = 0.17–0.39), with higher MG activation compared to LG in the barefoot conditions (p = 0.004–0.027, d = 0.72–0.83), and nonsignificant differences between muscles in the shod conditions (p > 0.05). Shod exercise compared to barefoot resulted in lower MG activation (p = 0.001–0.003, d = 0.62–0.63) and non-significant differences in LG activation. These results indicate that barefoot walking and jogging increase MG activation compared to shod conditions, with no differences in LG activation. Additionally, footwear reduces differences between MG and LG.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.