Hanwei Zheng , Zhiqing Liu , Hao Zheng , Yuman Miao , Chenyu Liu , Minhua Zong , Wenyong Lou
{"title":"Investigation into optimizing fermentation processes to enhance uric acid degradation by probiotics","authors":"Hanwei Zheng , Zhiqing Liu , Hao Zheng , Yuman Miao , Chenyu Liu , Minhua Zong , Wenyong Lou","doi":"10.1016/j.jbiotec.2024.10.008","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance the activity of <em>Lactiplantibacillus plantarum FS4722</em> (<em>L. plantarum FS4722</em>) in reducing uric acid, this study optimized the culture medium components and fermentation conditions using response surface methodology. The results indicated that the optimal culture medium comprised glucose at 25.61 g/L, yeast extract powder (<em>YEP</em>) at 26.86 g/L, and nucleoside addition at 0.48 g/L. The optimal fermentation conditions were: a fermentation time of 10 h, an initial pH of 6.5, a fermentation temperature of 33 °C, and an inoculum size of 1.0 %. Under these conditions, the nucleoside degradation ability of <em>L. plantarum FS4722</em> increased by 41.9 times, enhancing its potential applications in reducing uric acid and developing anti-gout foods, health supplements, and pharmaceuticals.</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"396 ","pages":"Pages 28-35"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165624002700","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance the activity of Lactiplantibacillus plantarum FS4722 (L. plantarum FS4722) in reducing uric acid, this study optimized the culture medium components and fermentation conditions using response surface methodology. The results indicated that the optimal culture medium comprised glucose at 25.61 g/L, yeast extract powder (YEP) at 26.86 g/L, and nucleoside addition at 0.48 g/L. The optimal fermentation conditions were: a fermentation time of 10 h, an initial pH of 6.5, a fermentation temperature of 33 °C, and an inoculum size of 1.0 %. Under these conditions, the nucleoside degradation ability of L. plantarum FS4722 increased by 41.9 times, enhancing its potential applications in reducing uric acid and developing anti-gout foods, health supplements, and pharmaceuticals.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.