Physical and mechanical properties assessment of glass ionomer cements modified with TiO2 and Mg-doped hydroxyapatite nanoparticles.

IF 3.1 4区 医学 Q2 BIOPHYSICS
Bojana Ramić, Milica Cvjetićanin, Branislav Bajkin, Milan Drobac, Marija Milanović, Dragan Rajnović, Veljko Krstonošić, Đorđe Veljović
{"title":"Physical and mechanical properties assessment of glass ionomer cements modified with TiO<sub>2</sub> and Mg-doped hydroxyapatite nanoparticles.","authors":"Bojana Ramić, Milica Cvjetićanin, Branislav Bajkin, Milan Drobac, Marija Milanović, Dragan Rajnović, Veljko Krstonošić, Đorđe Veljović","doi":"10.1177/22808000241282184","DOIUrl":null,"url":null,"abstract":"<p><p>High viscosity glass ionomer cements (GICs) are widely used in various clinical applications, being particularly effective in atraumatic restorative treatment (ART) due to the synergistic interaction between the material and the technique. However, the inadequate mechanical properties of GICs raise concerns regarding the predictability and longevity of these restorations in areas exposed to occlusal stress. Various modifications of the powder components have been proposed to improve the mechanical strength of GICs to withstand occlusal loading during mastication. In this in vitro study, we investigated whether the nanoparticles (NPs) added to commercially available GICs could fulfill this requirement, which would likely broaden the spectrum of their potential clinical applications. Two commercially available GIC powders (Fuji IX and Ketac Molar), modified by the addition of 5 wt.% TiO<sub>2</sub>, MgHAp100 or MgHAp1000 NPs, were incorporated into the corresponding liquid in an appropriate ratio, and the mixed cements were evaluated in terms of fracture toughness, flexural strength, Vickers microhardness and rheological tests and compared with the original material. Fuji IX containing 5 wt.% MgHAp100 NPs had lower flexural strength, while Ketac Molar with 5 wt.% TiO<sub>2</sub> NPs showed increased fracture toughness. Vickers microhardness increased in Fuji IX following the addition of 5 wt.% TiO<sub>2</sub> and MgHAp100 but decreased in Ketac Molar comprising 5 wt.% MgHAp100 (<i>p</i> < 0.05). Achieving a predictable bond between NPs and cement matrix, as well as ensuring a uniform distribution of the NPs within the cement, are critical prerequisites for enhancing the mechanical performance of the original cement.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241282184"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/22808000241282184","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

High viscosity glass ionomer cements (GICs) are widely used in various clinical applications, being particularly effective in atraumatic restorative treatment (ART) due to the synergistic interaction between the material and the technique. However, the inadequate mechanical properties of GICs raise concerns regarding the predictability and longevity of these restorations in areas exposed to occlusal stress. Various modifications of the powder components have been proposed to improve the mechanical strength of GICs to withstand occlusal loading during mastication. In this in vitro study, we investigated whether the nanoparticles (NPs) added to commercially available GICs could fulfill this requirement, which would likely broaden the spectrum of their potential clinical applications. Two commercially available GIC powders (Fuji IX and Ketac Molar), modified by the addition of 5 wt.% TiO2, MgHAp100 or MgHAp1000 NPs, were incorporated into the corresponding liquid in an appropriate ratio, and the mixed cements were evaluated in terms of fracture toughness, flexural strength, Vickers microhardness and rheological tests and compared with the original material. Fuji IX containing 5 wt.% MgHAp100 NPs had lower flexural strength, while Ketac Molar with 5 wt.% TiO2 NPs showed increased fracture toughness. Vickers microhardness increased in Fuji IX following the addition of 5 wt.% TiO2 and MgHAp100 but decreased in Ketac Molar comprising 5 wt.% MgHAp100 (p < 0.05). Achieving a predictable bond between NPs and cement matrix, as well as ensuring a uniform distribution of the NPs within the cement, are critical prerequisites for enhancing the mechanical performance of the original cement.

用二氧化钛和掺镁羟基磷灰石纳米颗粒改性的玻璃离聚体水门汀的物理和机械性能评估
高粘度玻璃离聚体水门汀(GIC)被广泛用于各种临床应用,由于材料和技术之间的协同作用,它在非创伤性修复治疗(ART)中尤其有效。然而,由于 GIC 的机械性能不足,人们担心这些修复体在咬合应力作用下的可预测性和使用寿命。为了提高 GIC 的机械强度以承受咀嚼时的咬合负荷,人们提出了对粉末成分进行各种改良的建议。在这项体外研究中,我们调查了添加到市售 GIC 中的纳米颗粒(NPs)是否能满足这一要求,这可能会扩大其潜在的临床应用范围。我们将两种市售的 GIC 粉末(Fuji IX 和 Ketac Molar)以适当的比例加入到相应的液体中,并通过添加 5 wt.% 的 TiO2、MgHAp100 或 MgHAp1000 NPs 对其进行改性,然后从断裂韧性、抗弯强度、维氏显微硬度和流变测试等方面对混合水门汀进行评估,并与原始材料进行比较。含有 5 wt.% MgHAp100 NPs 的 Fuji IX 的抗折强度较低,而含有 5 wt.% TiO2 NPs 的 Ketac Molar 的断裂韧性有所提高。添加 5 wt.% TiO2 和 MgHAp100 后,Fuji IX 的维氏硬度增加了,但含有 5 wt.% MgHAp100 的 Ketac Molar 的维氏硬度降低了(p<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Biomaterials & Functional Materials
Journal of Applied Biomaterials & Functional Materials BIOPHYSICS-ENGINEERING, BIOMEDICAL
CiteScore
4.40
自引率
4.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials. The areas covered by the journal will include: • Biomaterials / Materials for biomedical applications • Functional materials • Hybrid and composite materials • Soft materials • Hydrogels • Nanomaterials • Gene delivery • Nonodevices • Metamaterials • Active coatings • Surface functionalization • Tissue engineering • Cell delivery/cell encapsulation systems • 3D printing materials • Material characterization • Biomechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信