Kelly Lorrane Araújo, Ester Gomes de Oliveira Bezerra, Luanda Camilo Portela, Yanna Gomes da Silva, Kaio Lucas da Silva Raposo, Juliana Sá Vitor, Higor da Silva Ferreira, Naylla Raquel Costa Leite Campos, Karoline de Assis Veras Bacelar, Wilmer Martínez Martínez, Felipe de Jesus Moraes Junior, Adriana Raquel de Almeida da Anunciação
{"title":"Cryodehydration applied to bovine fetal hearts: A model for studying cardiac organogenesis.","authors":"Kelly Lorrane Araújo, Ester Gomes de Oliveira Bezerra, Luanda Camilo Portela, Yanna Gomes da Silva, Kaio Lucas da Silva Raposo, Juliana Sá Vitor, Higor da Silva Ferreira, Naylla Raquel Costa Leite Campos, Karoline de Assis Veras Bacelar, Wilmer Martínez Martínez, Felipe de Jesus Moraes Junior, Adriana Raquel de Almeida da Anunciação","doi":"10.1111/joa.14156","DOIUrl":null,"url":null,"abstract":"<p><p>The study aimed to standardize the cryodehydration technique for bovine fetal hearts, focusing on optimizing protocols for each developmental stage to preserve morphological characteristics. We analyzed 29 bovine fetal hearts categorized into early, middle, and late developmental stages. These hearts underwent cryodehydration until a 60%-70% reduction in original fluid volume was achieved. Biometric data were recorded and statistically analyzed using Pearson correlation tests for age versus weight and age versus number of cryodehydration sessions. Morphometric comparisons before and after cryodehydration were performed using paired t-tests. In Group I, hearts exhibited well-defined structures, including the atrium cordis, ventriculus cordis, auricula atrii, aorta, truncus pulmonalis, and ramus coronaries arteria, which were preserved in Groups II and III. Additionally, in Group I the heart had a conical or flat apex cordis, whereas those in Groups II and III had a more pronounced apex. The average number of cryodehydration sessions required was 9.38 (±1.2) days for Group I, 12.37 (±1.4) days for Group II, and 15 days for Group III. A positive correlation was found between age and sample weight, indicating that more developed hearts were heavier. Similarly, there was a positive correlation between gestational age and the number of cryodehydration sessions, suggesting that more advanced stages required more cryodehydration sessions. Paired t-tests demonstrated high statistical significance in the morphometric parameters before and after cryodehydration, indicating a loss of mass during dehydration. However, there was no alteration in the macroscopic structure of the hearts, which remained morphologically preserved. In conclusion, cryodehydration shows promise for preserving and analyzing the external morphological characteristics of bovine fetal cardiac development. It also provides lightweight, odorless, and easy-to-handle specimens ideal for detailed morphological studies and offers a unique perspective for investigating cardiac morphology in biological research contexts.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14156","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The study aimed to standardize the cryodehydration technique for bovine fetal hearts, focusing on optimizing protocols for each developmental stage to preserve morphological characteristics. We analyzed 29 bovine fetal hearts categorized into early, middle, and late developmental stages. These hearts underwent cryodehydration until a 60%-70% reduction in original fluid volume was achieved. Biometric data were recorded and statistically analyzed using Pearson correlation tests for age versus weight and age versus number of cryodehydration sessions. Morphometric comparisons before and after cryodehydration were performed using paired t-tests. In Group I, hearts exhibited well-defined structures, including the atrium cordis, ventriculus cordis, auricula atrii, aorta, truncus pulmonalis, and ramus coronaries arteria, which were preserved in Groups II and III. Additionally, in Group I the heart had a conical or flat apex cordis, whereas those in Groups II and III had a more pronounced apex. The average number of cryodehydration sessions required was 9.38 (±1.2) days for Group I, 12.37 (±1.4) days for Group II, and 15 days for Group III. A positive correlation was found between age and sample weight, indicating that more developed hearts were heavier. Similarly, there was a positive correlation between gestational age and the number of cryodehydration sessions, suggesting that more advanced stages required more cryodehydration sessions. Paired t-tests demonstrated high statistical significance in the morphometric parameters before and after cryodehydration, indicating a loss of mass during dehydration. However, there was no alteration in the macroscopic structure of the hearts, which remained morphologically preserved. In conclusion, cryodehydration shows promise for preserving and analyzing the external morphological characteristics of bovine fetal cardiac development. It also provides lightweight, odorless, and easy-to-handle specimens ideal for detailed morphological studies and offers a unique perspective for investigating cardiac morphology in biological research contexts.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.