Neuronal SLC39A8 deficiency impairs cerebellar development by altering manganese homeostasis.

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Eun-Kyung Choi, Luisa Aring, Yujie Peng, Adele B Correia, Andrew P Lieberman, Shigeki Iwase, Young Ah Seo
{"title":"Neuronal SLC39A8 deficiency impairs cerebellar development by altering manganese homeostasis.","authors":"Eun-Kyung Choi, Luisa Aring, Yujie Peng, Adele B Correia, Andrew P Lieberman, Shigeki Iwase, Young Ah Seo","doi":"10.1172/jci.insight.168440","DOIUrl":null,"url":null,"abstract":"<p><p>Solute carrier family 39, member 8 (SLC39A8), is a transmembrane transporter that mediates the cellular uptake of zinc, iron, and manganese (Mn). Human genetic studies document the involvement of SLC39A8 in Mn homeostasis, brain development, and function. However, the role and pathophysiological mechanisms of SLC39A8 in the central nervous system remain elusive. We generated Slc39a8 neuron-specific knockout (Slc39a8-NSKO) mice to study SLC39A8 function in neurons. The Slc39a8-NSKO mice displayed markedly decreased Mn levels in the whole brain and brain regions, especially the cerebellum. Radiotracer studies using 54Mn revealed that Slc39a8-NSKO mice had impaired brain uptake of Mn. Slc39a8-NSKO cerebellums exhibited morphological defects and abnormal dendritic arborization of Purkinje cells. Reduced neurogenesis and increased apoptotic cell death occurred in the cerebellar external granular layer of Slc39a8-NSKO mice. Brain Mn deficiency in Slc39a8-NSKO mice was associated with motor dysfunction. Unbiased RNA-Seq analysis revealed downregulation of key pathways relevant to neurodevelopment and synaptic plasticity, including cAMP signaling pathway genes. We further demonstrated that Slc39a8 was required for the optimal transcriptional response to the cAMP-mediated signaling pathway. In summary, our study highlighted the essential roles of SLC39A8 in brain Mn uptake and cerebellum development and functions.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"9 20","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530126/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.168440","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solute carrier family 39, member 8 (SLC39A8), is a transmembrane transporter that mediates the cellular uptake of zinc, iron, and manganese (Mn). Human genetic studies document the involvement of SLC39A8 in Mn homeostasis, brain development, and function. However, the role and pathophysiological mechanisms of SLC39A8 in the central nervous system remain elusive. We generated Slc39a8 neuron-specific knockout (Slc39a8-NSKO) mice to study SLC39A8 function in neurons. The Slc39a8-NSKO mice displayed markedly decreased Mn levels in the whole brain and brain regions, especially the cerebellum. Radiotracer studies using 54Mn revealed that Slc39a8-NSKO mice had impaired brain uptake of Mn. Slc39a8-NSKO cerebellums exhibited morphological defects and abnormal dendritic arborization of Purkinje cells. Reduced neurogenesis and increased apoptotic cell death occurred in the cerebellar external granular layer of Slc39a8-NSKO mice. Brain Mn deficiency in Slc39a8-NSKO mice was associated with motor dysfunction. Unbiased RNA-Seq analysis revealed downregulation of key pathways relevant to neurodevelopment and synaptic plasticity, including cAMP signaling pathway genes. We further demonstrated that Slc39a8 was required for the optimal transcriptional response to the cAMP-mediated signaling pathway. In summary, our study highlighted the essential roles of SLC39A8 in brain Mn uptake and cerebellum development and functions.

神经元 SLC39A8 缺乏会改变锰的平衡,从而损害小脑的发育。
溶质运载家族 39 成员 8(SLC39A8)是一种跨膜转运体,可介导细胞对锌、铁和锰(Mn)的吸收。人类基因研究表明,SLC39A8 参与了锰的平衡、大脑发育和功能。然而,SLC39A8 在中枢神经系统中的作用和病理生理机制仍然难以捉摸。我们培育了 Slc39a8 神经元特异性基因敲除(Slc39a8-NSKO)小鼠来研究 SLC39A8 在神经元中的功能。Slc39a8-NSKO小鼠全脑和脑区(尤其是小脑)的锰含量明显下降。使用 54Mn 进行的放射性示踪剂研究显示,Slc39a8-NSKO 小鼠大脑对锰的吸收能力受损。Slc39a8-NSKO小鼠的小脑表现出形态缺陷和浦肯野细胞树突轴化异常。Slc39a8-NSKO小鼠小脑外颗粒层的神经发生减少,细胞凋亡增加。Slc39a8-NSKO小鼠的脑锰缺乏与运动功能障碍有关。无偏 RNA-Seq 分析显示,与神经发育和突触可塑性相关的关键通路(包括 cAMP 信号通路基因)出现下调。我们进一步证明,Slc39a8 是 cAMP 信号通路最佳转录反应所必需的。总之,我们的研究强调了SLC39A8在大脑锰吸收和小脑发育及功能中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信