Exploiting the synergistic influence of AgNPs-TiO2NPs: enhancing phytostabilization of Pb and mitigating its toxicity in Vigna unguiculata.

IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Luqmon Azeez, Ayoade L Adejumo, Abayomi A Oladejo, Bukola Olalekan, Saheed Basiru, Oyeyinka K Oyelami, Abdulrahman O Makanjuola, Victoria Ogungbe, Aisha Hammed, Monsurat Abdullahi
{"title":"Exploiting the synergistic influence of AgNPs-TiO<sub>2</sub>NPs: enhancing phytostabilization of Pb and mitigating its toxicity in <i>Vigna unguiculata</i>.","authors":"Luqmon Azeez, Ayoade L Adejumo, Abayomi A Oladejo, Bukola Olalekan, Saheed Basiru, Oyeyinka K Oyelami, Abdulrahman O Makanjuola, Victoria Ogungbe, Aisha Hammed, Monsurat Abdullahi","doi":"10.1080/15226514.2024.2412815","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a composite of silver and titanium dioxide nanoparticles (AgNPs-TiO<sub>2</sub>NPs) was examined for its synergistic effects on phytostabilization of lead (Pb) and mitigation of toxicity in cowpea (<i>Vigna unguiculata</i> (L) Walp). Seeds of <i>V. unguiculata</i> were wetted with water, 0.05 and 0.1 mgL<sup>-1</sup> Pb and 25 mgmL<sup>-1</sup> each of AgNPs, TiO<sub>2</sub>NPs, and AgNPs-TiO<sub>2</sub>NPs. Root lengths of <i>V. unguiculata</i> were reduced by 25% and 44% at 0.05 and 0.1 mgL<sup>-1</sup> Pb, respectively, while shoot lengths were reduced by 2% and 7%. In <i>V. unguiculata</i>, AgNPs and TiO<sub>2</sub>NPs significantly improved physiological indicators and mitigated Pb effects, with TiO<sub>2</sub>NPs modulating physiological parameters more effectively than AgNPs. The composite (AgNPs-TiO<sub>2</sub>NPs) synergistically regulated <i>V. unguiculata</i> physiology better than individual nanoparticles. Compared to individual AgNPs and TiO<sub>2</sub>NPs, the composite (AgNPs-TiO<sub>2</sub>NPs) synergistically increased antioxidant activity by 12% and 9%, and carotenoid contents by 88%. Additionally, AgNPs-TiO<sub>2</sub>NPs effectively reduced malondialdehyde levels by 29%, thereby mitigating the effects of Pb on <i>V. unguiculata</i> better than individual nanoparticles. AgNPs-TiO<sub>2</sub>NPs enhanced Pb immobilization by 57%, reducing its translocation from soil to shoots compared to <i>V. unguiculata</i> wetted with water. The bioconcentration and translocation factors of Pb indicate that phytostabilization was most effective when the composite was used.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-11"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2412815","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a composite of silver and titanium dioxide nanoparticles (AgNPs-TiO2NPs) was examined for its synergistic effects on phytostabilization of lead (Pb) and mitigation of toxicity in cowpea (Vigna unguiculata (L) Walp). Seeds of V. unguiculata were wetted with water, 0.05 and 0.1 mgL-1 Pb and 25 mgmL-1 each of AgNPs, TiO2NPs, and AgNPs-TiO2NPs. Root lengths of V. unguiculata were reduced by 25% and 44% at 0.05 and 0.1 mgL-1 Pb, respectively, while shoot lengths were reduced by 2% and 7%. In V. unguiculata, AgNPs and TiO2NPs significantly improved physiological indicators and mitigated Pb effects, with TiO2NPs modulating physiological parameters more effectively than AgNPs. The composite (AgNPs-TiO2NPs) synergistically regulated V. unguiculata physiology better than individual nanoparticles. Compared to individual AgNPs and TiO2NPs, the composite (AgNPs-TiO2NPs) synergistically increased antioxidant activity by 12% and 9%, and carotenoid contents by 88%. Additionally, AgNPs-TiO2NPs effectively reduced malondialdehyde levels by 29%, thereby mitigating the effects of Pb on V. unguiculata better than individual nanoparticles. AgNPs-TiO2NPs enhanced Pb immobilization by 57%, reducing its translocation from soil to shoots compared to V. unguiculata wetted with water. The bioconcentration and translocation factors of Pb indicate that phytostabilization was most effective when the composite was used.

利用 AgNPs-TiO2NPs 的协同作用:增强植物对铅的稳定性并减轻其对 Vigna unguiculata 的毒性。
本研究考察了银和二氧化钛纳米颗粒(AgNPs-TiO2NPs)的复合材料对豇豆(Vigna unguiculata (L) Walp)中铅(Pb)的植物稳定和减轻毒性的协同作用。用水、0.05 和 0.1 mgL-1 铅以及 AgNPs、TiO2NPs 和 AgNPs-TiO2NPs 各 25 mgmL-1 润湿豇豆种子。在 0.05 和 0.1 mgL-1 Pb 的条件下,V. unguiculata 的根长分别减少了 25% 和 44%,而芽长则分别减少了 2% 和 7%。AgNPs 和 TiO2NPs 能明显改善 V. unguiculata 的生理指标并减轻 Pb 的影响,其中 TiO2NPs 比 AgNPs 更有效地调节生理参数。与单个纳米粒子相比,复合纳米粒子(AgNPs-TiO2NPs)能更好地协同调节鳗鲡的生理机能。与单独的 AgNPs 和 TiO2NPs 相比,复合纳米粒子(AgNPs-TiO2NPs)协同提高了 12% 和 9% 的抗氧化活性以及 88% 的类胡萝卜素含量。此外,AgNPs-TiO2NPs 还能有效降低 29% 的丙二醛水平,从而比单个纳米粒子更好地减轻铅对鳗鲡的影响。AgNPs-TiO2NPs 对铅的固定作用增强了 57%,与用水润湿的鹅掌楸相比,减少了铅从土壤向嫩枝的转移。铅的生物富集和转移因子表明,使用复合材料时,植物稳定效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信