L-Arginine and Taurisolo® Effects on Brain Hypoperfusion-Reperfusion Damage in Hypertensive Rats.

IF 5.6 2区 生物学
Dominga Lapi, Gian Carlo Tenore, Giuseppe Federighi, Martina Chiurazzi, Santo Nunziato, Maria S Lonardo, Mariano Stornaiuolo, Antonio Colantuoni, Ettore Novellino, Rossana Scuri
{"title":"L-Arginine and Taurisolo<sup>®</sup> Effects on Brain Hypoperfusion-Reperfusion Damage in Hypertensive Rats.","authors":"Dominga Lapi, Gian Carlo Tenore, Giuseppe Federighi, Martina Chiurazzi, Santo Nunziato, Maria S Lonardo, Mariano Stornaiuolo, Antonio Colantuoni, Ettore Novellino, Rossana Scuri","doi":"10.3390/ijms251910868","DOIUrl":null,"url":null,"abstract":"<p><p>Acute and chronic hypertension causes cerebral vasculopathy, increasing the risk of ischemia and stroke. Our study aimed to compare the effects of arterial pressure reduction on the pial microvascular responses induced by hypoperfusion and reperfusion in spontaneously hypertensive Wistar rats, desamethasone-induced hypertensive Wistar rats and age-matched normotensive Wistar rats fed for 3 months with a normal diet or normal diet supplemented with L-arginine or Taurisolo<sup>®</sup> or L-arginine plus Taurisolo<sup>®</sup>. At the end of treatments, the rats were submitted to bilateral occlusion of common carotid arteries for 30 min and reperfusion. The microvascular parameters investigated in vivo through a cranial window were: arteriolar diameter changes, permeability increase, leukocyte adhesion to venular walls and percentage of capillaries perfused. Hypoperfusion-reperfusion caused in all rats marked microvascular changes. L-arginine treatment was effective in reducing arterial blood pressure causing vasodilation but did not significantly reduce the damage induced by hypoperfusion-reperfusion. Taurisolo<sup>®</sup> treatment was less effective in reducing blood pressure but prevented microvascular damage from hypoperfusion-reperfusion. L-arginine plus Taurisolo<sup>®</sup> maintained blood pressure levels within the physiological range and protected the pial microcirculation from hypoperfusion-reperfusion-induced microvascular injuries. Therefore, the blood pressure reduction is not the only fundamental aspect to protect the cerebral circulation from hypoperfusion-reperfusion damage.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477348/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms251910868","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acute and chronic hypertension causes cerebral vasculopathy, increasing the risk of ischemia and stroke. Our study aimed to compare the effects of arterial pressure reduction on the pial microvascular responses induced by hypoperfusion and reperfusion in spontaneously hypertensive Wistar rats, desamethasone-induced hypertensive Wistar rats and age-matched normotensive Wistar rats fed for 3 months with a normal diet or normal diet supplemented with L-arginine or Taurisolo® or L-arginine plus Taurisolo®. At the end of treatments, the rats were submitted to bilateral occlusion of common carotid arteries for 30 min and reperfusion. The microvascular parameters investigated in vivo through a cranial window were: arteriolar diameter changes, permeability increase, leukocyte adhesion to venular walls and percentage of capillaries perfused. Hypoperfusion-reperfusion caused in all rats marked microvascular changes. L-arginine treatment was effective in reducing arterial blood pressure causing vasodilation but did not significantly reduce the damage induced by hypoperfusion-reperfusion. Taurisolo® treatment was less effective in reducing blood pressure but prevented microvascular damage from hypoperfusion-reperfusion. L-arginine plus Taurisolo® maintained blood pressure levels within the physiological range and protected the pial microcirculation from hypoperfusion-reperfusion-induced microvascular injuries. Therefore, the blood pressure reduction is not the only fundamental aspect to protect the cerebral circulation from hypoperfusion-reperfusion damage.

L-Arginine 和 Taurisolo® 对高血压大鼠脑过度灌注-再灌注损伤的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信