Freezing and bioreactor in the low-concentration detergents: A novel approach in the decellularization of small-diameter arteries.

IF 1.4 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Nho Thuan Nguyen, Hoang Minh Lam, Thang Quoc Bui, Ha Le Bao Tran
{"title":"Freezing and bioreactor in the low-concentration detergents: A novel approach in the decellularization of small-diameter arteries.","authors":"Nho Thuan Nguyen, Hoang Minh Lam, Thang Quoc Bui, Ha Le Bao Tran","doi":"10.1177/03913988241288369","DOIUrl":null,"url":null,"abstract":"<p><p>Using decellularized small-diameter vascular bypass substitutes (<6 mm) is an efficient method for bypass grafting. A solution containing 0.5% SDS (weight/volume) is commonly used for extended periods to generate acellular tissues. However, this solution causes damage to the microfibril structure and alters the mechanical forces. Hence, the objective of this study is to reduce the concentration of SDS to preserve the structure and achieve efficient decellularization. The study employs a diluted solution of 0.3% SDS (weight/volume) to treat fresh and frozen swine small-diameter arteries, utilizing physical methods such as freezing and thawing. The effectiveness of cell removal was evaluated using histological analysis and the remaining DNA content of the sample. Furthermore, the acellular circuit also assesses the cytotoxicity and proliferation of HUVECs to gauge their safety. Through the use of 0.3% SDS, a bioreactor system, and freezing-thawing, the pig arteries are successfully decellularized, resulting in residual DNA levels of less than 50 ng/mg dry weight. This process does not cause any major changes to the biomechanical or structural properties of the arteries. The acellular samples exhibit no toxicity on the L929 cell line and promote the growth of HUVECs at their highest rate on the fourth day. This allows for the placement of acellular vascular grafts to evaluate physiological processes within the animal body. This is an important requirement in clinical blood vessel transplantation.</p>","PeriodicalId":13932,"journal":{"name":"International Journal of Artificial Organs","volume":" ","pages":"816-825"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Artificial Organs","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/03913988241288369","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Using decellularized small-diameter vascular bypass substitutes (<6 mm) is an efficient method for bypass grafting. A solution containing 0.5% SDS (weight/volume) is commonly used for extended periods to generate acellular tissues. However, this solution causes damage to the microfibril structure and alters the mechanical forces. Hence, the objective of this study is to reduce the concentration of SDS to preserve the structure and achieve efficient decellularization. The study employs a diluted solution of 0.3% SDS (weight/volume) to treat fresh and frozen swine small-diameter arteries, utilizing physical methods such as freezing and thawing. The effectiveness of cell removal was evaluated using histological analysis and the remaining DNA content of the sample. Furthermore, the acellular circuit also assesses the cytotoxicity and proliferation of HUVECs to gauge their safety. Through the use of 0.3% SDS, a bioreactor system, and freezing-thawing, the pig arteries are successfully decellularized, resulting in residual DNA levels of less than 50 ng/mg dry weight. This process does not cause any major changes to the biomechanical or structural properties of the arteries. The acellular samples exhibit no toxicity on the L929 cell line and promote the growth of HUVECs at their highest rate on the fourth day. This allows for the placement of acellular vascular grafts to evaluate physiological processes within the animal body. This is an important requirement in clinical blood vessel transplantation.

低浓度洗涤剂中的冷冻和生物反应器:小直径动脉脱细胞的新方法。
使用脱细胞小口径血管旁路替代物 (
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Artificial Organs
International Journal of Artificial Organs 医学-工程:生物医学
CiteScore
3.40
自引率
5.90%
发文量
92
审稿时长
3 months
期刊介绍: The International Journal of Artificial Organs (IJAO) publishes peer-reviewed research and clinical, experimental and theoretical, contributions to the field of artificial, bioartificial and tissue-engineered organs. The mission of the IJAO is to foster the development and optimization of artificial, bioartificial and tissue-engineered organs, for implantation or use in procedures, to treat functional deficits of all human tissues and organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信