Co-existing ambient fine particulate matter exacerbated electronic cigarette toxicity on human respiratory cells.

IF 2 4区 医学 Q4 TOXICOLOGY
Inhalation Toxicology Pub Date : 2024-08-01 Epub Date: 2024-10-21 DOI:10.1080/08958378.2024.2416428
Guanghe Wang, Wenjing Liu, Yujie Cao, Wanqi Chen, Nuo Chen
{"title":"Co-existing ambient fine particulate matter exacerbated electronic cigarette toxicity on human respiratory cells.","authors":"Guanghe Wang, Wenjing Liu, Yujie Cao, Wanqi Chen, Nuo Chen","doi":"10.1080/08958378.2024.2416428","DOIUrl":null,"url":null,"abstract":"<p><p>Respiratory co-exposure to ambient PM<sub>2.5</sub> and electronic cigarettes (e-cigarettes) frequently occurs in public. However, the combined effects on human respiratory health have not been well documented. To discuss potential co-effects and possible biological mechanisms, A549/THP-1 co-cultures and BEAS-2B cells were exposed to unvapedtobacco or mint-flavored e-liquids (0-7.2% v/v), e-cigarette aerosol extract (ECE, 0-50% v/v), PM<sub>2.5</sub> (60 μg/mL), or PM<sub>2.5</sub> + ECE for 24 h. Cell viability assessments on e-liquids, ECE, PM<sub>2.5</sub> + ECE showed that the mint flavor exhibited higher cytotoxicity compared to the tobacco flavor in both A549/THP-1 and BEAS-2B. However, the influence of flavors on ROS levels and mRNA expression of inflammatory markers (IL-6, TNF-α, IL-8, IL-1β) after ECE exposure demonstrated inconsistency in the two cell models. PM<sub>2.5</sub> + ECE treatment notably elevated ROS production and inflammation responses compared to ECE alone exposure. Only co-exposure induced a significant increase in nuclear transcription factor-κB p65 (NF-κB p65) and NOD-like receptor 3 (NLRP3) protein expression regardless of flavors. Our results indicate that PM<sub>2.5</sub>-treated cells exacerbate the adverse effects induced by ECE in both A549/THP-1 and BEAS-2B cells. Flavors in unvaped e-liquids affect cytotoxicity, oxidative stress and inflammation response, but these effects vary depending on the vaping process and the specific cell line.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"461-473"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhalation Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08958378.2024.2416428","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Respiratory co-exposure to ambient PM2.5 and electronic cigarettes (e-cigarettes) frequently occurs in public. However, the combined effects on human respiratory health have not been well documented. To discuss potential co-effects and possible biological mechanisms, A549/THP-1 co-cultures and BEAS-2B cells were exposed to unvapedtobacco or mint-flavored e-liquids (0-7.2% v/v), e-cigarette aerosol extract (ECE, 0-50% v/v), PM2.5 (60 μg/mL), or PM2.5 + ECE for 24 h. Cell viability assessments on e-liquids, ECE, PM2.5 + ECE showed that the mint flavor exhibited higher cytotoxicity compared to the tobacco flavor in both A549/THP-1 and BEAS-2B. However, the influence of flavors on ROS levels and mRNA expression of inflammatory markers (IL-6, TNF-α, IL-8, IL-1β) after ECE exposure demonstrated inconsistency in the two cell models. PM2.5 + ECE treatment notably elevated ROS production and inflammation responses compared to ECE alone exposure. Only co-exposure induced a significant increase in nuclear transcription factor-κB p65 (NF-κB p65) and NOD-like receptor 3 (NLRP3) protein expression regardless of flavors. Our results indicate that PM2.5-treated cells exacerbate the adverse effects induced by ECE in both A549/THP-1 and BEAS-2B cells. Flavors in unvaped e-liquids affect cytotoxicity, oxidative stress and inflammation response, but these effects vary depending on the vaping process and the specific cell line.

同时存在的环境细颗粒物加剧了电子香烟对人体呼吸道细胞的毒性。
在公共场合,呼吸系统经常会同时接触到环境中的 PM2.5 和电子香烟(电子烟)。然而,其对人类呼吸系统健康的综合影响还没有很好的记录。为了讨论潜在的共同效应和可能的生物机制,A549/THP-1共培养物和BEAS-2B细胞暴露于未吸食烟草或薄荷味电子液体(0-7.2% v/v)、电子烟气溶胶提取物(ECE,0-50% v/v)、PM2.对电子烟液、ECE、PM2.5 + ECE 进行的细胞活力评估显示,薄荷味比烟草味对 A549/THP-1 和 BEAS-2B 的细胞毒性更高。然而,在暴露于 ECE 后,两种香料对 ROS 水平和炎症标志物(IL-6、TNF-α、IL-8、IL-1β)mRNA 表达的影响在两种细胞模型中表现不一致。与单独暴露于 ECE 相比,PM2.5 + ECE 处理明显增加了 ROS 的产生和炎症反应。只有共同暴露才会诱导核转录因子-κB p65(NF-κB p65)和类NOD受体3(NLRP3)蛋白表达的显著增加,而与各种口味无关。我们的研究结果表明,PM2.5处理过的细胞会加剧ECE对A549/THP-1和BEAS-2B细胞诱导的不良影响。未经吸食的电子液体中的香料会影响细胞毒性、氧化应激和炎症反应,但这些影响因吸食过程和特定细胞系而异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inhalation Toxicology
Inhalation Toxicology 医学-毒理学
CiteScore
4.10
自引率
4.80%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Inhalation Toxicology is a peer-reviewed publication providing a key forum for the latest accomplishments and advancements in concepts, approaches, and procedures presently being used to evaluate the health risk associated with airborne chemicals. The journal publishes original research, reviews, symposia, and workshop topics involving the respiratory system’s functions in health and disease, the pathogenesis and mechanism of injury, the extrapolation of animal data to humans, the effects of inhaled substances on extra-pulmonary systems, as well as reliable and innovative models for predicting human disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信