Metabolic gatekeepers: Dynamic roles of sugar transporters in insect metabolism and physiology.

IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bhagyashri Y Chaudhari, Aditya G Pradhan, Rakesh S Joshi
{"title":"Metabolic gatekeepers: Dynamic roles of sugar transporters in insect metabolism and physiology.","authors":"Bhagyashri Y Chaudhari, Aditya G Pradhan, Rakesh S Joshi","doi":"10.1111/imb.12963","DOIUrl":null,"url":null,"abstract":"<p><p>Sugars play multiple critical roles in insects, serving as energy sources, carbon skeletons, osmolytes and signalling molecules. The transport of sugars from source to sink via membrane proteins is essential for the uptake, distribution and utilization of sugars across various tissues. Sugar supply and distribution are crucial for insect development, flight, diapause and reproduction. Insect sugar transporters (STs) share significant structural and functional similarities with those in mammals and other higher eukaryotes. However, they exhibit unique characteristics, including differential regulation, substrate selectivity and kinetics. Here, we have discussed structural diversity, evolutionary trends, expression dynamics, mechanisms of action and functional significance of insect STs. The sequence and structural diversity of insect STs, highlighted by the analysis of conserved domains and evolutionary patterns, underpins their functional differentiation and divergence. The review emphasizes the importance of STs in insect metabolism, physiology and stress tolerance. It also discusses how variations in transporter regulation, expression, selectivity and activity contribute to functional differences. Furthermore, we have underlined the potential and necessity of studying these mechanisms and roles to gain a deeper understanding of insect glycobiology. Understanding the regulation and function of sugar transporters is vital for comprehending insect metabolism and physiological potential. This review provides valuable insights into the diverse functionalities of insect STs and their significant roles in metabolism and physiology.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12963","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sugars play multiple critical roles in insects, serving as energy sources, carbon skeletons, osmolytes and signalling molecules. The transport of sugars from source to sink via membrane proteins is essential for the uptake, distribution and utilization of sugars across various tissues. Sugar supply and distribution are crucial for insect development, flight, diapause and reproduction. Insect sugar transporters (STs) share significant structural and functional similarities with those in mammals and other higher eukaryotes. However, they exhibit unique characteristics, including differential regulation, substrate selectivity and kinetics. Here, we have discussed structural diversity, evolutionary trends, expression dynamics, mechanisms of action and functional significance of insect STs. The sequence and structural diversity of insect STs, highlighted by the analysis of conserved domains and evolutionary patterns, underpins their functional differentiation and divergence. The review emphasizes the importance of STs in insect metabolism, physiology and stress tolerance. It also discusses how variations in transporter regulation, expression, selectivity and activity contribute to functional differences. Furthermore, we have underlined the potential and necessity of studying these mechanisms and roles to gain a deeper understanding of insect glycobiology. Understanding the regulation and function of sugar transporters is vital for comprehending insect metabolism and physiological potential. This review provides valuable insights into the diverse functionalities of insect STs and their significant roles in metabolism and physiology.

代谢看门人:糖转运体在昆虫新陈代谢和生理学中的动态作用。
糖类在昆虫体内发挥着多种关键作用,可作为能量来源、碳骨架、渗透溶解物和信号分子。糖类通过膜蛋白从源到汇的运输对于糖类在不同组织中的吸收、分配和利用至关重要。糖的供应和分配对昆虫的发育、飞行、休眠和繁殖至关重要。昆虫的糖转运体(ST)与哺乳动物和其他高等真核生物的糖转运体在结构和功能上有很大的相似之处。然而,它们也表现出独特的特征,包括不同的调节、底物选择性和动力学。在此,我们讨论了昆虫 STs 的结构多样性、进化趋势、表达动态、作用机制和功能意义。通过对保守结构域和进化模式的分析,我们强调了昆虫 STs 序列和结构的多样性,这也是其功能分化和差异的基础。综述强调了 STs 在昆虫新陈代谢、生理和抗逆性方面的重要性。它还讨论了转运体调控、表达、选择性和活性的变化是如何导致功能差异的。此外,我们还强调了研究这些机制和作用以深入了解昆虫糖生物学的潜力和必要性。了解糖转运体的调控和功能对于理解昆虫的新陈代谢和生理潜能至关重要。本综述就昆虫糖转运体的各种功能及其在新陈代谢和生理学中的重要作用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Insect Molecular Biology
Insect Molecular Biology 生物-昆虫学
CiteScore
4.80
自引率
3.80%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins. This includes research related to: • insect gene structure • control of gene expression • localisation and function/activity of proteins • interactions of proteins and ligands/substrates • effect of mutations on gene/protein function • evolution of insect genes/genomes, especially where principles relevant to insects in general are established • molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations • gene mapping using molecular tools • molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信