Fingolimod, an antagonist of sphingosine 1-phosphate, ameliorates Sjögren's syndrome by reducing the number of STAT3–induced germinal center B cells and increasing the number of Breg cells
{"title":"Fingolimod, an antagonist of sphingosine 1-phosphate, ameliorates Sjögren's syndrome by reducing the number of STAT3–induced germinal center B cells and increasing the number of Breg cells","authors":"","doi":"10.1016/j.imlet.2024.106935","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Sjögren's syndrome (SS) is an autoimmune disease caused by infiltrating lymphocytes. FTY720 affects the S1P signaling pathway, which plays a role in T and B cell migration from secondary lymphoid tissues to target organs. In this study, we investigate the regulatory mechanism of FTY720 in the context of SS.</div></div><div><h3>Method</h3><div>FTY720 was given orally every day to NOD mice. The salivary flow rate (SFR) and blood glucose level were assayed every 3 weeks. Histopathological features were investigated at the end of the study. In vitro, FTY720 was added to mouse splenocytes, and changes in the lymphocyte subsets were assessed.</div></div><div><h3>Results</h3><div>In vivo, FTY720 increased the SFR and reduced the blood glucose level. The salivary gland histological score and infiltration of the salivary glands by B and T cells were dramatically decreased. Furthermore, STAT expression in the salivary gland was decreased. In vitro, FTY720 inhibited Th17 cells, while increasing regulatory T (Treg) cells, respectively. Also, FTY720 decreased and increased the numbers of germinal center (GC) B cells and regulatory B cells (Breg cells), respectively. FTY720 decreased the IgG level in culture supernatants. Also, STAT3 activation was decreased by FTY720.</div></div><div><h3>Conclusion</h3><div>Our results show the therapeutic potential of FTY720 in the context of SS; FTY720 prevents lymphocyte migration from secondary lymphoid organs to target organs.</div></div>","PeriodicalId":13413,"journal":{"name":"Immunology letters","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165247824001093","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Sjögren's syndrome (SS) is an autoimmune disease caused by infiltrating lymphocytes. FTY720 affects the S1P signaling pathway, which plays a role in T and B cell migration from secondary lymphoid tissues to target organs. In this study, we investigate the regulatory mechanism of FTY720 in the context of SS.
Method
FTY720 was given orally every day to NOD mice. The salivary flow rate (SFR) and blood glucose level were assayed every 3 weeks. Histopathological features were investigated at the end of the study. In vitro, FTY720 was added to mouse splenocytes, and changes in the lymphocyte subsets were assessed.
Results
In vivo, FTY720 increased the SFR and reduced the blood glucose level. The salivary gland histological score and infiltration of the salivary glands by B and T cells were dramatically decreased. Furthermore, STAT expression in the salivary gland was decreased. In vitro, FTY720 inhibited Th17 cells, while increasing regulatory T (Treg) cells, respectively. Also, FTY720 decreased and increased the numbers of germinal center (GC) B cells and regulatory B cells (Breg cells), respectively. FTY720 decreased the IgG level in culture supernatants. Also, STAT3 activation was decreased by FTY720.
Conclusion
Our results show the therapeutic potential of FTY720 in the context of SS; FTY720 prevents lymphocyte migration from secondary lymphoid organs to target organs.
期刊介绍:
Immunology Letters provides a vehicle for the speedy publication of experimental papers, (mini)Reviews and Letters to the Editor addressing all aspects of molecular and cellular immunology. The essential criteria for publication will be clarity, experimental soundness and novelty. Results contradictory to current accepted thinking or ideas divergent from actual dogmas will be considered for publication provided that they are based on solid experimental findings.
Preference will be given to papers of immediate importance to other investigators, either by their experimental data, new ideas or new methodology. Scientific correspondence to the Editor-in-Chief related to the published papers may also be accepted provided that they are short and scientifically relevant to the papers mentioned, in order to provide a continuing forum for discussion.