Viraj R Muthye, Aralia Leon Coria, Hongrui Liu, Cameron P Goater, Constance A M Finney, James D Wasmuth
{"title":"The Highly Repetitive Genome of Myxobolus rasmusseni, an Emerging Myxozoan Parasite of Fathead Minnows.","authors":"Viraj R Muthye, Aralia Leon Coria, Hongrui Liu, Cameron P Goater, Constance A M Finney, James D Wasmuth","doi":"10.1093/gbe/evae220","DOIUrl":null,"url":null,"abstract":"<p><p>Myxozoans are a monophyletic taxon of approximately 2,400 described species of parasites from the phylum Cnidaria. The recent focus on their negative impacts on fisheries, on their evolution from free-living ancestors, and on their emergence into new fish host populations has stressed the critical need for genomic resources for this parasitic group. Here, we describe the genome assembly and annotation of Myxobolus rasmusseni, an emerging parasite of fathead minnows in Alberta, Canada. The assembly is 174.6 Mb in size, 68% of which is made up of repetitive elements, making it one of the most repetitive animal genomes sequenced to date. Through comparisons to other myxozoans, we show that widespread gene loss, a known phenomenon of this group of parasites, is consistent with closely related species. Additionally, we assembled the M. rasmusseni mitochondrial genome, which is nearly twice the size of the typical animal mitochondrial genome yet contains only five of the canonical mitochondrial protein-coding genes and open reading frames not found in other myxozoans. These results add to our understanding of the gene- and genome-level diversity observed in myxozoans.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557904/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae220","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Myxozoans are a monophyletic taxon of approximately 2,400 described species of parasites from the phylum Cnidaria. The recent focus on their negative impacts on fisheries, on their evolution from free-living ancestors, and on their emergence into new fish host populations has stressed the critical need for genomic resources for this parasitic group. Here, we describe the genome assembly and annotation of Myxobolus rasmusseni, an emerging parasite of fathead minnows in Alberta, Canada. The assembly is 174.6 Mb in size, 68% of which is made up of repetitive elements, making it one of the most repetitive animal genomes sequenced to date. Through comparisons to other myxozoans, we show that widespread gene loss, a known phenomenon of this group of parasites, is consistent with closely related species. Additionally, we assembled the M. rasmusseni mitochondrial genome, which is nearly twice the size of the typical animal mitochondrial genome yet contains only five of the canonical mitochondrial protein-coding genes and open reading frames not found in other myxozoans. These results add to our understanding of the gene- and genome-level diversity observed in myxozoans.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.