{"title":"LncRNA MALAT1 Facilitates Parkinson's Disease Progression by Increasing SOCS3 Promoter Methylation.","authors":"Yuqi Liu, Dan Feng, Fenfen Liu, Yun Liu, Fangya Zuo, Yujie Wang, Lanlan Chen, Xiuhong Guo, Jinyong Tian","doi":"10.1159/000541719","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been shown to be involved in Parkinson's disease (PD) progression, but its mechanism needs to be further explored.</p><p><strong>Methods: </strong>Mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD mice models, and BV2 cells were treated with lipopolysaccharides (LPS) to mimic PD cell models. MALAT1 expression and suppressor of cytokine signaling 3 (SOCS3) protein level were examined using quantitative real-time PCR and Western blot, respectively. Cell functions were tested by cell counting kit 8 assay and flow cytometry. The interaction between MALAT1 and SOCS3 was confirmed using RNA pull-down and RIP assays.</p><p><strong>Results: </strong>MALAT1 was upregulated in MPTP-induced PD mice and LPS-induced BV2 cells. Silencing of MALAT1 increased viability, while inhibiting apoptosis and inflammation in LPS-induced BV2 cells. Besides, MALAT1 enhanced the SOCS3 promoter methylation to decrease its expression by recruiting DNMT1, DNMT3A, and DNMT3B. Furthermore, SOCS3 knockdown eliminated sh-MALAT1-mediated the inhibition effect on LPS-induced BV2 cell injury. In vivo, MALAT1 silencing ameliorated neurological impairment and neuroinflammation in MPTP-induced PD mice.</p><p><strong>Conclusion: </strong>Our data revealed that MALAT1 worsened PD processes via inhibiting SOCS3 expression by increasing its promoter methylation.</p>","PeriodicalId":12662,"journal":{"name":"Gerontology","volume":" ","pages":"1-11"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000541719","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been shown to be involved in Parkinson's disease (PD) progression, but its mechanism needs to be further explored.
Methods: Mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD mice models, and BV2 cells were treated with lipopolysaccharides (LPS) to mimic PD cell models. MALAT1 expression and suppressor of cytokine signaling 3 (SOCS3) protein level were examined using quantitative real-time PCR and Western blot, respectively. Cell functions were tested by cell counting kit 8 assay and flow cytometry. The interaction between MALAT1 and SOCS3 was confirmed using RNA pull-down and RIP assays.
Results: MALAT1 was upregulated in MPTP-induced PD mice and LPS-induced BV2 cells. Silencing of MALAT1 increased viability, while inhibiting apoptosis and inflammation in LPS-induced BV2 cells. Besides, MALAT1 enhanced the SOCS3 promoter methylation to decrease its expression by recruiting DNMT1, DNMT3A, and DNMT3B. Furthermore, SOCS3 knockdown eliminated sh-MALAT1-mediated the inhibition effect on LPS-induced BV2 cell injury. In vivo, MALAT1 silencing ameliorated neurological impairment and neuroinflammation in MPTP-induced PD mice.
Conclusion: Our data revealed that MALAT1 worsened PD processes via inhibiting SOCS3 expression by increasing its promoter methylation.
期刊介绍:
In view of the ever-increasing fraction of elderly people, understanding the mechanisms of aging and age-related diseases has become a matter of urgent necessity. ''Gerontology'', the oldest journal in the field, responds to this need by drawing topical contributions from multiple disciplines to support the fundamental goals of extending active life and enhancing its quality. The range of papers is classified into four sections. In the Clinical Section, the aetiology, pathogenesis, prevention and treatment of agerelated diseases are discussed from a gerontological rather than a geriatric viewpoint. The Experimental Section contains up-to-date contributions from basic gerontological research. Papers dealing with behavioural development and related topics are placed in the Behavioural Science Section. Basic aspects of regeneration in different experimental biological systems as well as in the context of medical applications are dealt with in a special section that also contains information on technological advances for the elderly. Providing a primary source of high-quality papers covering all aspects of aging in humans and animals, ''Gerontology'' serves as an ideal information tool for all readers interested in the topic of aging from a broad perspective.