Study on the effect of phenoxyethanol-citric acid pretreatment for the enzymatic hydrolysis of bamboo residues.

IF 4.3 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Frontiers in Bioengineering and Biotechnology Pub Date : 2024-10-03 eCollection Date: 2024-01-01 DOI:10.3389/fbioe.2024.1483025
Yan Cheng, Xiaoxue Zhao, Ruolin Li, Jili Liao, Caoxing Huang
{"title":"Study on the effect of phenoxyethanol-citric acid pretreatment for the enzymatic hydrolysis of bamboo residues.","authors":"Yan Cheng, Xiaoxue Zhao, Ruolin Li, Jili Liao, Caoxing Huang","doi":"10.3389/fbioe.2024.1483025","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the biphasic phenoxyethanol-citric acid (PECA) pretreatment for bamboo residues (BRs) and its corresponding effects on the enzymatic hydrolysis performance. It is found that increasing the concentration of citric acid in the pretreatment system from 2.5% to 15% greatly enhanced the delignification and xylan removal for BRs. Consequently, the enzymatic hydrolysis yield of pretreated BRs significantly enhanced, increasing from 12.4% to 58.2% and 28.0%72.4% when the concentration of citric acid was increased from 2.5% to 15.0% at 160°C and 170°C, respectively. The characterization results from cellulose crystallinity, accessibility, and hydrophobicity of pretreated bamboo residues indicated that their changes possessed a beneficial performance on the enzymatic hydrolysis yield, which could result from the synergistic removal of lignin and xylan. The Chrastil model analysis showed that pretreatment at higher conditions resulted in the pretreated BRs possessing weaker diffusion resistance for cellulase, which is attributed to its higher enzymatic hydrolysis yield.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"12 ","pages":"1483025"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484043/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1483025","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the biphasic phenoxyethanol-citric acid (PECA) pretreatment for bamboo residues (BRs) and its corresponding effects on the enzymatic hydrolysis performance. It is found that increasing the concentration of citric acid in the pretreatment system from 2.5% to 15% greatly enhanced the delignification and xylan removal for BRs. Consequently, the enzymatic hydrolysis yield of pretreated BRs significantly enhanced, increasing from 12.4% to 58.2% and 28.0%72.4% when the concentration of citric acid was increased from 2.5% to 15.0% at 160°C and 170°C, respectively. The characterization results from cellulose crystallinity, accessibility, and hydrophobicity of pretreated bamboo residues indicated that their changes possessed a beneficial performance on the enzymatic hydrolysis yield, which could result from the synergistic removal of lignin and xylan. The Chrastil model analysis showed that pretreatment at higher conditions resulted in the pretreated BRs possessing weaker diffusion resistance for cellulase, which is attributed to its higher enzymatic hydrolysis yield.

研究苯氧乙醇-柠檬酸预处理对酶水解竹渣的影响。
本研究探讨了双相苯氧乙醇-柠檬酸(PECA)预处理竹渣(BRs)的方法及其对酶水解性能的影响。研究发现,将预处理系统中柠檬酸的浓度从 2.5% 提高到 15%,可大大提高竹渣的脱木素和木聚糖能力。因此,当柠檬酸的浓度从 2.5% 增加到 15.0%,温度分别为 160°C 和 170°C 时,预处理过的 BR 的酶水解产率明显提高,分别从 12.4% 增加到 58.2% 和 28.0%72.4%。预处理竹渣的纤维素结晶度、可及性和疏水性的表征结果表明,它们的变化对酶水解产率有好处,这可能是由于协同去除木质素和木聚糖的结果。Chrastil 模型分析表明,在较高条件下进行预处理,预处理后的竹残片对纤维素酶的扩散阻力较弱,因此酶水解产率较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信