Zakir Husain, Zafar Iqbal Warsi, Sana Khan, Ganesan Mahendran, Shama Afroz, Ashish Chandran, Praveen Kumar Kashyap, Kahkashan Khatoon, Gazala Parween, Sudeep Tandon, Laiq Ur Rahman
{"title":"Metabolic engineering of hairy root cultures in <i>Beta vulgaris</i> for enhanced production of vanillin, 4-hydroxybenzoic acid, and vanillyl alcohol.","authors":"Zakir Husain, Zafar Iqbal Warsi, Sana Khan, Ganesan Mahendran, Shama Afroz, Ashish Chandran, Praveen Kumar Kashyap, Kahkashan Khatoon, Gazala Parween, Sudeep Tandon, Laiq Ur Rahman","doi":"10.3389/fbioe.2024.1435190","DOIUrl":null,"url":null,"abstract":"<p><p>The flavor of vanilla is a complex blend of compounds, with vanillin as the most prominent, along with vanillyl alcohol and 4-hydroxybenzoic acid. Natural vanillin extracted from vanilla beans is expensive, so researchers use heterologous synthesis to produce nature-identical vanillin in plant hosts. Consequently, alternative traditional farming and gathering methods are required to bridge the significant disparity between supply and demand. The current research successfully developed a method to induce hairy root formation from leaves. It integrated the Vanillin synthase (VpVAN) gene into transgenic hairy root lines of <i>Beta vulgaris</i>, synthesizing vanillin-related compounds. The presence of the VpVAN gene in transgenic roots was confirmed using PCR analysis. Additionally, RT-qPCR analysis demonstrated the expression of the VpVAN gene in the transgenic root lines. The transgenic hairy root clones H1, H2, and H5 showed enhanced vanillin production, vanillyl alcohol, and 4-hydroxybenzoic acid. Elicitation with methyl jasmonate (MJ) and salicylic acid (SA) further improved the production of these compounds in <i>B. vulgaris</i> hairy roots. The maximum hairy root biomass was observed after 60 days, with the maximum synthesis of vanillin and 4-hydroxybenzoic acid obtained from hairy root clones H5 and HR2, respectively. Vanillyl alcohol HR2 was obtained on the 45th day of cultivation. Elicitation with wound-associated hormone methyl jasmonate and salicylic acid enhanced the yield of vanillin, vanillyl alcohol, and 4-hydroxybenzoic acid, with a 215-fold increase in vanillin, a 13-fold increase in vanillyl alcohol, and a 21 fold increase in 4-hydroxybenzoic acid. The study results indicate that establishing transgenic hairy root cultures with the VpVAN gene is a promising alternative method for enhancing the production of vanilla flavor compounds such as vanillin, vanillyl alcohol, and 4-hydroxybenzoic acid. A cost-effective protocol has been developed to mass-produce phenolic compounds using a hairy root culture of <i>B. vulgaris</i>. This approach addresses the increasing demand for these substances while reducing the cost of natural vanillin production, making it suitable for industrial-scale applications.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"12 ","pages":"1435190"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480924/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1435190","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The flavor of vanilla is a complex blend of compounds, with vanillin as the most prominent, along with vanillyl alcohol and 4-hydroxybenzoic acid. Natural vanillin extracted from vanilla beans is expensive, so researchers use heterologous synthesis to produce nature-identical vanillin in plant hosts. Consequently, alternative traditional farming and gathering methods are required to bridge the significant disparity between supply and demand. The current research successfully developed a method to induce hairy root formation from leaves. It integrated the Vanillin synthase (VpVAN) gene into transgenic hairy root lines of Beta vulgaris, synthesizing vanillin-related compounds. The presence of the VpVAN gene in transgenic roots was confirmed using PCR analysis. Additionally, RT-qPCR analysis demonstrated the expression of the VpVAN gene in the transgenic root lines. The transgenic hairy root clones H1, H2, and H5 showed enhanced vanillin production, vanillyl alcohol, and 4-hydroxybenzoic acid. Elicitation with methyl jasmonate (MJ) and salicylic acid (SA) further improved the production of these compounds in B. vulgaris hairy roots. The maximum hairy root biomass was observed after 60 days, with the maximum synthesis of vanillin and 4-hydroxybenzoic acid obtained from hairy root clones H5 and HR2, respectively. Vanillyl alcohol HR2 was obtained on the 45th day of cultivation. Elicitation with wound-associated hormone methyl jasmonate and salicylic acid enhanced the yield of vanillin, vanillyl alcohol, and 4-hydroxybenzoic acid, with a 215-fold increase in vanillin, a 13-fold increase in vanillyl alcohol, and a 21 fold increase in 4-hydroxybenzoic acid. The study results indicate that establishing transgenic hairy root cultures with the VpVAN gene is a promising alternative method for enhancing the production of vanilla flavor compounds such as vanillin, vanillyl alcohol, and 4-hydroxybenzoic acid. A cost-effective protocol has been developed to mass-produce phenolic compounds using a hairy root culture of B. vulgaris. This approach addresses the increasing demand for these substances while reducing the cost of natural vanillin production, making it suitable for industrial-scale applications.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.