Shirui Gou, Yan Liu, Qianqian Li, Jielin Yang, Long Qiu, Yu Zhao
{"title":"CRISPR/Cas12 System-Based Assay for Rapid, Sensitive Detection of Rotavirus in Food Samples.","authors":"Shirui Gou, Yan Liu, Qianqian Li, Jielin Yang, Long Qiu, Yu Zhao","doi":"10.1089/fpd.2024.0078","DOIUrl":null,"url":null,"abstract":"<p><p>Foodborne viruses have become an important threat to food safety and human health. Among the foodborne viruses, group A rotavirus is the most important pathogen of diarrhea in autumn and winter. The field detection of rotavirus is crucial for the early control of infection and patient management. Quantitative real-time reverse transcription-polymerase chain reaction is the most widely used in virus detection. However, the technique relies on high-cost instruments and trained personnel, which limit its use in field detection. In this study, we developed accurate, realizable, and simple detection methods by combining optimized CRISPR (clustered regularly interspaced short palindromic repeats) Cas12 and reverse transcription loop-mediated isothermal amplification (RT-LAMP) (reverse transcription loop-mediated isothermal amplification) to reduce the requirements for temperature control and costly real-time fluorescence polymerase chain reaction instruments. We investigated two nucleic acid detection systems combining RT-LAMP with CRISPR Cas12a and RT-LAMP with CRISPR Cas12b and compared them with reverse transcription-quantitative polymerase chain reaction. The resulting detection system only needs a reaction temperature and in single tube to react for 60 min with the detection sensitivity of 38 copies/μL. Overall, this study developed an innovative method for the rapid detection of rotavirus in food samples, which will help to effectively identify food contaminated by pathogens and prevent human infections and economic losses caused by disease outbreaks.</p>","PeriodicalId":12333,"journal":{"name":"Foodborne pathogens and disease","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foodborne pathogens and disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1089/fpd.2024.0078","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Foodborne viruses have become an important threat to food safety and human health. Among the foodborne viruses, group A rotavirus is the most important pathogen of diarrhea in autumn and winter. The field detection of rotavirus is crucial for the early control of infection and patient management. Quantitative real-time reverse transcription-polymerase chain reaction is the most widely used in virus detection. However, the technique relies on high-cost instruments and trained personnel, which limit its use in field detection. In this study, we developed accurate, realizable, and simple detection methods by combining optimized CRISPR (clustered regularly interspaced short palindromic repeats) Cas12 and reverse transcription loop-mediated isothermal amplification (RT-LAMP) (reverse transcription loop-mediated isothermal amplification) to reduce the requirements for temperature control and costly real-time fluorescence polymerase chain reaction instruments. We investigated two nucleic acid detection systems combining RT-LAMP with CRISPR Cas12a and RT-LAMP with CRISPR Cas12b and compared them with reverse transcription-quantitative polymerase chain reaction. The resulting detection system only needs a reaction temperature and in single tube to react for 60 min with the detection sensitivity of 38 copies/μL. Overall, this study developed an innovative method for the rapid detection of rotavirus in food samples, which will help to effectively identify food contaminated by pathogens and prevent human infections and economic losses caused by disease outbreaks.
期刊介绍:
Foodborne Pathogens and Disease is one of the most inclusive scientific publications on the many disciplines that contribute to food safety. Spanning an array of issues from "farm-to-fork," the Journal bridges the gap between science and policy to reduce the burden of foodborne illness worldwide.
Foodborne Pathogens and Disease coverage includes:
Agroterrorism
Safety of organically grown and genetically modified foods
Emerging pathogens
Emergence of drug resistance
Methods and technology for rapid and accurate detection
Strategies to destroy or control foodborne pathogens
Novel strategies for the prevention and control of plant and animal diseases that impact food safety
Biosecurity issues and the implications of new regulatory guidelines
Impact of changing lifestyles and consumer demands on food safety.